Post-COVID-19 Pulmonary Fibrosis: An Update

  • Naresh Kumar Professor & Head, Department of Pulmonary Medicine, Maulana Azad Medical College, New Delhi, India.
  • Ankita Gupta Assistant Professor, Department of Pulmonary Medicine, Maulana Azad Medical College, New Delhi, India.
  • Harsh Vardhan Senior Resident, Department of Pulmonary Medicine, Maulana Azad Medical College, New Delhi, India.
  • Mradul Kumar Daga Director Professor, Department of Medicine, Maulana Azad Medical College, New Delhi, India.
Keywords: SARS-CoV-2, Post-COVID-19 Pulmonary Fibrosis, Antifibrotics, Pulmonary Rehabilitation


Coronavirus disease 2019 (COVID-19) is caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most common cause of hospitalisation for COVID-19 is interstitial pneumonia that may be complicated by Acute Respiratory Distress Syndrome (ARDS). With an increasing magnitude of COVID-19 survivors, post-COVID interstitial lung disease and pulmonary vascular disease are likely to be the most important long term respiratory complications. Data from previous coronavirus infections such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), as well as emerging data from the COVID-19 pandemic, suggest that there could be substantial pulmonary fibrotic consequences following SARS-CoV-2 infection. Thus, the long-term consequences of COVID-19 appear crucial. Here, we have discussed the pathogenesis, natural history, and radiological aspects of such patients and the possible predictors which might lead to the development of lung fibrosis. Older age, severity of illness, prolonged ICU stay, history of smoking and alcoholism are few of the risk factors for the development of post-COVID-19 pulmonary fibrosis. Therapeutic options like antifibrotic drugs such as pirfenidone, nintedanib, pulmonary rehabilitation, SARS-COV-2 vaccine etc. have been described. The role of steroids and antifibrotics in the prevention of post-COVID fibrosis is still controversial. Careful longitudinal follow‑up of multiple cohorts of post-COVID-19 survivors with serial lung function testing and imaging is required to complete the knowledge about natural history of the disease and the response to various therapies.

How to cite this article:
Kumar N, Gupta A, Vardhan H, Daga MK. Post-COVID-19 Pulmonary Fibrosis: An Update. J Adv Res Med. 2021;8(2):16-26.



Worldometer [Internet]. Coronavirus Outbreak; [cited 2021 May 25]. Available from: www.worldometers.


Carfì A, Bernabei R, Landi F; Gemelli against COVID-19 Post-Acute Care Study Group. Persistent symptoms in

patients after acute COVID-19. JAMA. 2020;324(6):603-5. [PubMed] [Google Scholar]

American Thoracic Society; European Respiratory Society. American Thoracic Society/European

Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial

Pneumonias. This joint statement of the American Thoracic Society (ATS) and the European Respiratory

Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June

Am J Respir Crit Care Med. 2002:165:277-304. [PubMed] [Google Scholar]

Travis WD, Costabel U, Hansell DM, King Jr TE, Lynch DA, Nicholson AG, Ryerson CJ, Ryu JH, Selman M, Wells

AU, Behr J, Bouros D, Brown KK, Colby TV, Collard HR, Cordeiro CR, Cottin V, Crestani B, Drent M, Dudden

RF, Egan J, Flaherty K, Hogaboam C, Inoue Y, Johkoh T, Kim DS, Kitaichi M, Loyd J, Martinez FJ, Myers J,

Protzko S, Raghu G, Richeldi L, Sverzellati N, Swigris J, Valeyre D; ATS/ERS Committee on Idiopathic Interstitial

Pneumonias. An Official American Thoracic Society/ European Respiratory Society Statement: Update of

the International Multidisciplinary Classification of the Idiopathic Interstitial Pneumonias. Am J Respir Crit Care

Med. 2013;188:733-48. [PubMed] [Google Scholar]

Vergnon JM, Vincent M, de The G, Mornex JF, Weynants P, Brune J. Cryptogenic fibrosing alveolitis and Epstein-

Barr virus: an association? Lancet. 1984;2(8406):768-71. [PubMed] [Google Scholar]

Tang YW, Johnson JE, Browning PJ, Cruz-Gervis RA, Davis A, Graham BS, Brigham KL, Oates Jr JA, Loyd JE,

Stecenko AA. Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis. J

Clin Microbiol. 2003;41(6):2633-40. [PubMed] [Google Scholar]

Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C. Radiological findings from 81 patients with

COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20:425-34. [PubMed]

[Google Scholar]

Liu X, Zhou H, Zhou Y, Wu X, Zhao Y, Lu Y, Tan W, Yuan M, Ding X, Zou J, Li R, Liu H, Ewing RM, Hu Y, Nie H,

Wang Y. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients. J

Infect. 2020;81(1):e95-e97. [PubMed] [Google Scholar]

Rai DK, Sharma P, Kumar R. Post covid 19 pulmonar fibrosis. Is it real threat? Indian J Tuberc. 2021;68(3):330-

[PubMed] [Google Scholar]

Fernandez IE, Eickelberg O. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic

pulmonary fibrosis. Lancet. 2012;380(9842):680-8. [PubMed] [Google Scholar]

Ortiz LA, Lasky J, Hamilton RF Jr, Holian A, Hoyle GW, Banks W, Peschon JJ, Brody AR, Lungarella G, Friedman

M. Expression of TNF and the necessity of TNF receptors in bleomycin-induced lung injury in mice. Exp Lung

Res. 1998;24(6):721-43. [PubMed] [Google Scholar]

Phua J, Weng L, Ling L, Egi M, Lim CM, Divatia JV, Shrestha BR, Arabi YM, Ng J, Gomersall CD, Nishimura

M, Koh Y, Du B; Asian Critical Care Clinical Trials Group. Intensive care management of coronavirus disease

(COVID-19): challenges and recommendations. Lancet Respir Med. 2020;8(5):506-17. [PubMed]

[Google Scholar]

Zuo W, Zhao X, Chen YG. SARS coronavirus and lung fibrosis. In: Lal S, editor. Molecular biology of the SARScoronavirus. Berlin and Heidelberg: Springer; 2010. p. 247-58. [Google Scholar]

Delpino MV, Quarleri J. SARS‑CoV‑2 Pathogenesis: Imbalance in the rennin-angiotensin system favors

lung fibrosis. Front Cell Infect Microbiol. 2020;10:340. [PubMed] [Google Scholar]

Hui DS, Wong KT, Ko FW, Tam LS, Chan DP, Woo J, Sung JJ. The 1-year impact of severe acute respiratory

syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest.

;128:2247-61. [PubMed] [Google Scholar]

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia

P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress

syndrome. Lancet Respir Med. 2020;8:420-2. [PubMed][Google Scholar]

Luo W, Yu H, Gou J, Li X, Sun Y, Li J, Liu L. Clinical pathology of critical patient with novel coronavirus

pneumonia (COVID‑19). Preprints. 2020;2020020407 [Google Scholar]

Wong KT, Antonio GE, Hui DS, Ho C, Chan PN, Ng WH, Shing KK, Wu A, Lee N, Yap F, Joynt GM, Sung JJ, Ahuja

AT. Severe acute respiratory syndrome: thin‑section computed tomography features, temporal changes, and

clinicoradiologic correlation during the convalescent period. J Comput Assist Tomogr. 2004;28:790‑5.

[PubMed] [Google Scholar]

Yu M, Liu Y, Xu D, Zhang R, Lan L, Xu H. Prediction of the development of pulmonary fibrosis using

serial thin‑section CT and clinical features in patients discharged after treatment for COVID‑19 pneumonia.

Korean J Radiol. 2020;21:746‑55. [PubMed] [Google Scholar]

Baumgartner KB, Samet JM, Stidley CA, Colby TV, Waldron JA. Cigarette smoking: a risk factor for

idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997;155(1):242-8. [PubMed] [Google Scholar]

Ali RM, Ghonimy MB. Post-COVID-19 pneumonia lung fibrosis: a worrisome sequelae in surviving

patients. Egypt J Radiol Nucl Med. 2021;52:101. [Google Scholar]

Francone M, Iafrate F, Masci GM, Coco S, Cilia F, Manganaro L, Panebianco V, Andreoli C, Colaiacomo

MC, Zingaropoli MA, Ciardi MR, Mastroianni CM, Pugliese F, Alessandri F, Turriziani O, Ricci P, Catalano

C. Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur

Radiol. 2020;30:6808-17. [PubMed] [Google Scholar]

George PM, Baratt SL, Condliffe R, Desai SR, Devaraj A, Forrest I, Gibbons MA, Hart N, Jenkins RG, McAuley

DF, Patel BV, Thwaite E, Spencer LG. Respiratory followup of patients with COVID-19 pneumonia. Thorax.

;75:1009-16. [PubMed] [Google Scholar]

McGroder CF, Zhang D, Choudhury MA, Salvatore MM, D’Souza BM, Hoffman EA, Wei Y, Baldwin MR, Garcia

CK. Pulmonary fibrosis 4 months after COVID-19 is associated with severity of illness and blood leucocyte

telomere length. Thorax. 2021;thoraxjnl-2021-217031. [PubMed] [Google Scholar]

Hunninghake GW, Lynch DA, Galvin JR, Gross BH, Muller N, Schwartz DA, King Jr TE, Lynch 3rd JP, Hegele R,

Waldron J, Colby TV, Hogg JC. Radiologic findings are strongly associated with a pathologic diagnosis of usual

interstitial pneumonia. Chest. 2003;124(4):1215-23. [PubMed] [Google Scholar]

Wei J, Yang H, Lei P, Fan B, Qiu Y, Zeng B, Yu P, Lv J, Jian Y, Wan C. Analysis of thin-section CT in patients

with coronavirus disease (COVID-19) after hospital discharge. J Xray Sci Technol. 2020;28:383-9. [PubMed]

[Google Scholar]

Li X, Zeng W, Li X, Chen H, Shi L, Li X, Xiang H, Cao Y, Chen H, Liu C, Wang J. CT imaging changes of corona

virus disease 2019 (COVID‑19): A multi‑center study in Southwest China. J Transl Med. 2020;18:154. [PubMed]

[Google Scholar]

Pan F, Ye T, Sun P, Gui S, Liang B, Li L, Zheng D, Wang J, Hesketh RL, Yang L, Zheng C. Time Course of Lung

Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology. 2020;295(3):715-

[PubMed] [Google Scholar]

Liu C, Ye L, Xia R, Zheng X, Yuan C, Wang Z, Lin R, Shi D, Gao Y, Yao J, Sun Q, Wang X, Jin M. Chest Computed

Tomography and clinical follow-up of discharged patients with COVID-19 in Wenzhou City, Zhejiang,

China. Ann Am Thorac Soc. 2020;17(10):1231-7. [PubMed] [Google Scholar]

Salamon M [Internet]. Persistent Lung Damage Improves Gradually After COVID‑19. Medscape; 2020

[cited 2021 May 28]. Available from:

Lim WS, Baudouin SV, George RC, Hill AT, Jamieson C, Jeune IL, Macfarlane JT, Read RC, Roberts HJ, Levy

ML, Wani M, Woodhead MA; Pneumonia Guidelines Committee of the BTS Standards of Care Committee.

Bts guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax.

;64:1-55. [PubMed] [Google Scholar]

Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, Cooley LA, Dean NC, Fine MJ, Flanders SA,

Griffin MR, Metersky ML, Musher DM, Restrepo MI, Whitney CG. Diagnosis and treatment of adults with

community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society

and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200:e45-67. [PubMed] [Google


Lama VN, Flaherty KR, Toews GB, Colby TV, Travis WD, Long Q, Murray S, Kazerooni EA, Gross BH, Lynch 3rd JP, Martinez FJ. Prognostic value of desaturation during a 6-minute walk test in idiopathic interstitial pneumonia.

Am J Respir Crit Care Med. 2003;168(9):1084-90. [PubMed] [Google Scholar]

34. Mo X, Jian W, Su Z, Chen M, Peng H, Peng P, Lei C, Chen R, Zhong N, Li S. Abnormal pulmonary function

in COVID-19 patients at time of hospital discharge. Eur Respir J. 2020;55. [PubMed] [Google Scholar]

Zhao YM, Shang YM, Song WB, Li QQ, Xie H, Xu QF, Jia JL, Li LM, Mao HL, Zhou XM, Luo H, Gao YF, Xu AG.

Follow‑up study of the pulmonary function and related physiological characteristics of COVID‑19 survivors

three months after recovery. EClinicalMedicine.2020;25:100463. [PubMed] [Google Scholar]

Hui DS, Joynt GM, Wong KT, Gomersall CD, Li TS, Antonio G, Ko W, Chan MC, Chan DP, Tong MW, Rainer TH,

Ahuja AT, Cockram CS, Sung JJ. Impact of severe acute respiratory syndrome (SARS) on pulmonary function,

functional capacity and quality of life in a cohort of survivors. Thorax. 2005;60:401-9. [PubMed] [Google


Das KM, Lee EY, Singh R, Enani MA, Dossari KA, Gorkom KV, Larsson SG, Langer RD. Follow-pp chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging. 2017;27:342-9. [PubMed] [Google Scholar]

Idiopathic Pulmonary Fibrosis Clinical Research Network; Raghu G, Anstrom KJ, King TE Jr, Lasky JA, Martinez FJ. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012;366(21):1968-

[PubMed] [Google Scholar]

The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary

Report. N Engl J Med. 2020. [Google Scholar]

Udwadia ZF, Pokhariyal PK, Tripathi AK, Kohli A. Fibrotic interstitial lung disease occurring as sequelae of

COVID-19 pneumonia despite concomitant steroids. Lung India. 2021;38:S61-3. [PubMed] [Google Scholar]

Azuma A, Nukiwa T, Tsuboi E, Suga M, Abe S, Nakata K, Taguchi Y, Nagai S, Itoh H, Ohi M, Sato A, Kudoh S.

Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J

Respir Crit Care Med. 2005;171(9):1040-7. [PubMed] [Google Scholar]

Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, King Jr TE, Lancaster L,

Sahn SA, Szwarcberg J, Valeyre D, du Bois RM; CAPACITY Study Group. Pirfenidone in patients with idiopathic

pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377(9779):1760-9. [PubMed] [Google


Flaherty KR, Wells AU, Cottin V, Devaraj A, Walsh SLF, Inoue Y, Richeldi L, Kolb M, Tetzlaff K, Stowasser S,

Coeck C, Clerisme-Beaty E, Rosenstock B, Quaresma M, Haeufel T, Goeldner RG, Schlenker-Herceg R,

Brown KK, INBUILD Trial Investigators. Nintedanib in progressive fibrosing interstitial lung diseases. N Engl

J Med. 2019;381:1718‑27. [PubMed] [Google Scholar]

George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic

therapy. Lancet Resp Med. 2020;8:807‑15. [PubMed] [Google Scholar]

Umemura Y, Mitsuyama Y, Minami K, Nishida T, Watanabe A, Okada N, Yamakawa K, Nochioka K, Fujimi

S. Efficacy and safety of nintedanib for pulmonary fibrosis in severe pneumonia induced by COVID-19: an

interventional study. Int J Infect Dis. 2021;108:454-60. [PubMed] [Google Scholar]

Momen AB, Khan F, Saber S, Sultana A, Alam RF, Raihan SG, Hossain MM, Alam T. Usefulness of pirfenidone

in Covid lung: a case series. Euro J Med Health Sci. 2021;3(1):24-6.

Singh P. Nintedanib therapy will improve management in covid 19 fibrosis if given early or not. World Health

Organization; 2020. [Google Scholar]

Lieber GB, Fernandez X, Mingo GG, Jia Y, Caniga M, Gil MA, Keshwani S, Woodhouse JD, Cicmil M, Moy LY, Kelly

N, Jimenez J, Crawley Y, Anthes JC, Klappenbach J, Ma YL, McLeod RL. Mineralocorticoid receptor antagonists

attenuate pulmonary inflammation and bleomycinevoked fibrosis in rodent models. Eur J Pharmacol.

;718:290-8. [PubMed] [Google Scholar]

Ji WJ, Ma YQ, Zhou X, Zhang YD, Lu RY, Guo ZZ, Sun HY, Hu DC, Yang GH, Li YM, Wei LQ. Spironolactone

attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte

phenotype switching in circulating and alveolar compartments. PLoS ONE. 2013;8:81090. [Google


Atalay C, Dogan N, Aykan S, Gundogdu C, Keles MS. The efficacy of spironolactone in the treatment of acute

respiratory distress syndrome-induced rats. Singapore Med J. 2010;51:501-5. [PubMed] [Google Scholar]

World Health Organization [Internet]. A WHO living guideline: drugs to prevent COVID-19; [cited 2021 Jun 21].

Available from:

Polastri M, Nava S, Clini E, Vitacca M, Gosselink R. COVID‑19 and pulmonary rehabilitation: Preparing

for phase three. Eur Respir J. 2020;55(6):2001822. [PubMed] [Google Scholar]

Ong KC, Ng AWK, Lee LSU, Kaw G, Kwek SK, Leow MKS, Earnest A. Pulmonary function and exercise capacity

in survivors of severe acute respiratory syndrome. Eur Respir J. 2004;24:436-42. [PubMed] [Google Scholar]

Liu K, Zhang W, Yang Y, Zhang J, Li Y, Chen Y. Respiratory rehabilitation in elderly patients with COVID-19: a

randomized controlled study. Complement Ther Clin Pract. 2020;39:101166. [PubMed] [Google Scholar]

Amit S, Regev-Yochay G, Afek A, Kreiss Y, Leshem E. Early rate reductions of SARS-CoV-2 infection and COVID-19 in BNT162b2 vaccine recipients. Lancet. 2021;397:875-7. [PubMed] [Google Scholar]

Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, Brooks N, Smaja M, Mircus G, Pan K, Southern J,

Swerdlow DL, Jodar L, Levy Y, Alroy-Preis S. Impact and effectiveness of mRNA BNT162b2 vaccine against SARSCoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccinationcampaign in Israel: an observational study using national surveillance data. Lancet. 2021;397:1819-

[PubMed] [Google Scholar]

Klok FA, Kruip MJ, van der Meer NJ, Arbous MS, Gommers DA, Kant KM, Kaptein FH, van Paassen J,

Stals MA, Huisman MV, Endeman H. Incidence of thrombotic complications in critically ill ICU patients

with COVID-19. Thromb Res. 2020;191:145-7. [PubMed] [Google Scholar]

Chen JY, Qiao K, Liu F, Wu B, Xu X, Jiao GQ, Lu RG, Li HX, Zhao J, Huang J, Yang Y, Lu XJ, Li JS, Jiang SY, Wang

DP, Hu CX, Wang GL, Huang DX, Jiao GH, Wei D, Ye SG, Huang JA, Zhou L, Zhang XQ, He JX. Lung transplantation

as therapeutic option in acute respiratory distress syndrome for coronavirus disease 2019-related

pulmonary fibrosis. Chin Med J (Engl). 2020 Jun 20;133(12):1390-6. [PubMed] [Google Scholar]

Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, Cosgrove K, Vojnik R, Calfee CS, Lee JW, Rogers

AJ, Levitt J, Wiener-Kronish J, Bajwa EK, Leavitt A, McKenna D, Thompson BT, Matthay MA. Mesenchymal

stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24-32.

[PubMed] [Google Scholar]

Patel NM, Lederer DJ, Borczuk AC, Kawut SM. Pulmonary hypertension in idiopathic pulmonary fibrosis. Chest.

;132(3):998-1006. [PubMed] [Google Scholar]

Akhmerov A, Marbán E. COVID-19 and the heart. Circ Res. 2020;126:1443-55. [PubMed] [Google Scholar]

Raghu G, Wilson KC. COVID‑19 interstitial pneumonia: monitoring the clinical course in survivors. Lancet Respir Med. 2020;8:839-42. [PubMed] [Google Scholar]