The Potential of Plants of Family Fabaceae with Emphasis on Putri Malu Medicinal Plant ‘Mimosa Pudica’ (Fabaceae) as an Antimalarial & an Insecticide for Malaria Vectors: A Review

  • MH Zacka Aditama Postgraduate Student, Universitas Padjadjaran, Bandung, Indonesia.
  • Nisa Fauziah Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia. Advanced Biomedical Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia. Infection Study Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
  • Afiat Berbudi Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia. Advanced Biomedical Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia. Infection Study Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
  • Hesti Lina Wiraswati Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia. Advanced Biomedical Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia. Infection Study Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
Keywords: Anopheles, Antimalaria, Antiplasmodial, Fabaceae, Insecticidal, Mimosa Pudica, Plasmodium

Abstract

Background: Due to the prevalence of malaria worldwide and cases of resistance to malaria drugs, finding new drug candidates is important in malaria control. Due to its traditional use and phytochemical content, this review was conducted on the medicinal plant Mimosa pudica and its family, Fabaceae.
Method: This review collected original articles in online databases using several keywords combined with boolean operators. The articles about the antimalarial and insecticidal effects of Mimosa pudica and other Fabaceae species were included in the study.
Results: Forty-two articles described 45 species from the Fabaceae family exhibiting antimalarial and/ or insecticidal potential including Mimosa pudica. The studies showed that crude extract of M. pudica showed activity against P. falciparum or P. berghei and insecticidal activity against Anopheles subpictus and Anopheles stephensi. More advanced studies were carried out on other Fabaceae species, evaluating their activity with crude extracts and fractions, isolated compounds, and silver nanoparticles (AgNPs).
Conclusions: The most promising antiplasmodial activity of M. pudica was shown by aqueous, methanol, and water/ methanol extracts from the aerial part against P. falciparum FCR-3 strain. In addition, aqueous or ethanolic extracts from the leaves of M. pudica revealed their potential against A. subpictus and A. stephensi.

How to cite this article:
MH Zacka Aditama, Fauziah N, Berbudi A, Wiraswati HL. The Potential of Plants of Family Fabaceae with Emphasis on Putri Malu Medicinal Plant ‘Mimosa Pudica’ (Fabaceae) as an Antimalarial & an Insecticide for Malaria Vectors: A Review. J Commun Dis. 2022;54(4):85-103.

DOI: https://doi.org/10.24321/0019.5138.2022108

References

World Health Organization [Internet]. World malaria report 2019. WHO Regional Office for Africa; 2019 [cited 2022 May 8]. Available from: https://www.who.int/news-room/fact-sheets/detail/malaria

World Health Organization [Internet]. WHO guidelines for malaria. Geneva; 2021 [cited 2022 May 8]. 210 p. Available from: https://apps.who.int/iris/rest/bitstreams/1332432/retrieve

The Indonesian Ministry of Health. Buku Saku Tatalaksana Malaria 2019. Sub Directorate of Malaria P2PTVZ Directorate of the Indonesian Ministry of Health [Internet]. 2019 [cited 2022 May 8].1-44. Available from: https://litbangkespangandaran.litbang.kemkes.go.id/perpustakaan/index.php?p=show_detail&id=4016

World Health Organization [Internet]. Malaria prevention works; 2017 [cited 2022 May 8]. 24 p. Available from: https://www.who.int/malaria/publications/atoz/malaria-prevention-works/en/

Sovi A, Keita C, Sinaba Y, Dicko A, Traore I, Cisse MB, Koita O, Dengela D, Flatley C, Bankineza E, Mihigo J, Belemvire A, Carlson J, Fornadel C, Oxborough RM. Anopheles gambiae (s.l.) exhibit high intensity pyrethroid resistance throughout Southern and Central Mali (2016-2018): PBO or next generation LLINs may provide greater control. Parasit Vectors [Internet]. 2020 [cited 2022 May 8];13(1):239. Available from: https://doi.org/10.1186/s13071-020-04100-7 [PubMed] [Google Scholar]

Naß J, Efferth T. Development of artemisinin resistance in malaria therapy. Pharmacol Res [Internet]. 2019 [cited 2022 May 8];146:104275. Available from: https://pubmed.ncbi.nlm.nih.gov/31100335/ [PubMed] [Google Scholar]

Nsanzabana C. Resistance to Artemisinin Combination Therapies (ACTs) do not forget the partner drug! Trop Med Infect Dis [Internet]. 2019 Feb 1 [cited 2022 May 8];4(1):26. Available from: https://pubmed.ncbi.nlm.nih.gov/30717149 [PubMed] [Google Scholar]

World Health Organization [Internet]. Artemisinin resistance and artemisinin-based combination therapy efficacy. WHO; 2019 [cited 2022 May 8];6. Available from: https://apps.who.int/iris/handle/10665/274362 [Google Scholar]

Thomas D, Tazerouni H, Sundararaj KG, Cooper JC. Therapeutic failure of primaquine and need for new medicines in radical cure of Plasmodium vivax. Acta Trop [Internet]. 2016 [cited 2022 May 8];160:35-8. Available from: https://www.sciencedirect.com/ science/article/pii/S0001706X16302029 [Google Scholar]

Takala-Harrison S, Laufer MK. Antimalarial drug resistance in Africa: key lessons for the future. Ann N Y Acad Sci [Internet]. 2015 Apr [cited 2022 May 8];1342:62-7. Available from: https://pubmed.ncbi.nlm.nih.gov/25891142 [PubMed] [Google Scholar]

White NJ, Hien TT, Nosten FH. A brief history of Qinghaosu. Trends Parasitol [Internet]. 2015 Dec [cited 2022 May 8];31(12):607-10. Available from: https://pubmed.ncbi.nlm.nih.gov/26776328 [PubMed] [Google Scholar]

Joseph B, George J, Mohan J. Pharmacology and traditional uses of Mimosa pudica. Int J Pharm Sci Drug Res. 2013;5(2):41-4. [Google Scholar]

Rudrapal M, Chetia D. Plant flavonoids as potential source of future antimalarial leads. Syst Rev Pharm. 2017;8(1):13-8. [Google Scholar]

Okpako I, Onyesom I. Antiplasmodial activity of the ethanolic extract and flavonoid fraction of the stem of Phyllanthus amarus in experimental mice. Afr Sci. 2019;20(4):175-80. [Google Scholar]

Uzor PF. Alkaloids from plants with antimalarial activity a review of recent studies. Evid Based Complement Alternat Med. 2020;2020:8749083. [PubMed] [Google Scholar]

Ahmad H, Sehgal S, Mishra A, Gupta R. Mimosa pudica L. (Laajvanti): an overview. Pharmacogn Rev [Internet]. 2012 Jul [cited 2022 May 8];6(12):115-24. Available from: https://pubmed.ncbi.nlm.nih.gov/23055637 [PubMed] [Google Scholar]

Supandi, Saputra YH, Anwar C, Kinanto, Kodir RA, Kurnia D, Fauziah N, Laelalugina A, Wiraswasti HL. Potential of reclamation area of coal mining sites in medical field. Int J Adv Res Eng Technol. 2020;11(8):714-20. [Google Scholar]

Aarthi N, Murugan K. Antimalarial activity and phytochemical screening of ethanolic leaf extract of Phyllanthus niruri and Mimosa pudica. Int J Pharm Res Dev. 2011;3(3):198-205. [Google Scholar]

Singh N, Kaushik NK, Mohanakrishnan D, Tiwari SK, Sahal D. Antiplasmodial activity of medicinal plants from Chhotanagpur plateau, Jharkhand, India. J Ethnopharmacol [Internet]. 2015 [cited 2022 May 8];165(Jul 2019):152-62. Available from: http://dx.doi.org/10.1016/j.jep. 2015.02.038 [PubMed] [Google Scholar]

Ogbole OO, Segun PA, Fasinu PS. Antimicrobial and antiprotozoal activities of twenty-four Nigerian medicinal plant extracts. South Afr J Bot [Internet]. 2018 [cited 2022 May 8];117:240-6. Available from: https://doi.org/10.1016/j.sajb. 2018.05.028 [Google Scholar]

Tran QL, Tezuka Y, Ueda JY, Nguyen NT, Maruyama Y, Begum K, Kim HS, Wataya Y, Tran QK, Kadota S. In vitro antiplasmodial activity of antimalarial medicinal plants used in Vietnamese traditional medicine. J Ethnopharmacol. 2003;86(2-3):249-52. [PubMed] [Google Scholar]

Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C. Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res. 2011;108(6):1541-9. [Google Scholar]

Aarthi N, Vasugi C, Panneerselvam C, Kumar KP, Madhiyazhagan P, Murugan K. Toxicity and smoke repellency effect of Mimosa pudica L. against the malarial vector Anopheles stephensi (Diptera: Culicidae). Bioscan. 2011;6(2):211-4.

Amilah SS, Fitria E. LC50 Dari ekstrak daun Putri malu (Mimosa pudica L.) aerhadap larva nyamuk demam berdarah (Aedes aegypti L.) dan larva nyamuk malaria (Anopheles sp.). J Mat dan Ilmu Pengetah Alam Unipa [Internet]. 2015 [cited 2022 May 8];8(01):5-8. Available from: http://jurnal.unipasby.ac.id/index.php/stigma/article/view/248. Indonesian. [Google Scholar]

Sachdeva C, Mohanakrishnan D, Kumar S, Kaushik NK. Assessment of in vitro and in vivo antimalarial efficacy and GC-fingerprints of selected medicinal plant extracts. Exp Parasitol [Internet]. 2020 [cited 2022 May 8];219(May):108011. Available from: https://doi.org/10.1016/j.exppara. 2020.108011 [PubMed] [Google Scholar]

Ohashi M, Amoa-Bosompem M, Kwofie KD, Agyapong J, Adegle R, Sakyiamah MM, Ayertey F, Owusu K, Tuffour I, Atchoglo P, Tung NH, Uto T, Aboagye F, Appiah AA, Appiah-Opong R, Nyarko AK, Anyan WK, Ayi I, Boakye DA, Koram KA, Edoh D, Yamaoka S, Shoyama Y, Ohta N. In vitro antiprotozoan activity and mechanisms of action of selected Ghanaian medicinal plants against Trypanosoma, Leishmania, and Plasmodium parasites. Phytother Res. 2018;32(8):1617-30. [PubMed] [Google Scholar]

Dabo NT, Ofori M, Edo D, Nyarko AK, Bimi L. In vivo anti-malarial potentials of some plants extracts on ICRmice, Mus musculus. Bayero J Pure Appl Sci [Internet]. 2016 [cited 2022 May 8];9(1):53-61. Available from: http://www.ajol.info/index.php/bajopas/article/view/139690/129400 [Google Scholar]

Sadiq MB, Tharaphan P, Chotivanich K, Tarning J, Anal AK. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. BMC Complement Altern Med. 2017;17(1):372. [PubMed] [Google Scholar]

Bonkian LN, Yerbanga RS, Koama B, Soma A, Cisse M, Valea I, Tinto H, Ouedraogo JB, Guigemde TR, Traore/ Coulibaly M. In vivo antiplasmodial activity of two Sahelian plant extracts on Plasmodium berghei ANKA infected NMRI mice. Evid Based Complement Alternat Med. 2018;2018:6859632. [PubMed] [Google Scholar]

Ezenyi IC, Okpoko CK, Ufondu CA, Okhale SE, Adzu B. Antiplasmodial, antinociceptive and antipyretic potential of the stem bark extract of Burkea africana and identification of its antiplasmodial-active fraction. J Tradit Complement Med [Internet]. 2021 [cited 2022 May 8];11(4):311-7. Available from: https://doi.org/10.1016/j.jtcme.2020.12.004 [PubMed] [Google Scholar]

Nondo RS, Erasto P, Moshi MJ, Zacharia A, Masimba PJ, Kidukuli AW. In vivo antimalarial activity of extracts of Tanzanian medicinal plants used for the treatment of malaria. J Adv Pharm Technol Res. 2016;7(2):59-63. [PubMed] [Google Scholar]

Da O, Yerbanga RS, Traore/Coulibaly M, Koama BK, Kabre Z, Tamboura S, Dakuyo ZP, Sekhoacha MP, Matsabisa MG, Nikiema JB, Ouedraogo JB, Ouedraogo GA. Evaluation of the antiplasmodial activity and lethality of the leaf extract of Cassia alata L. (Fabaceae). Pak J Biol Sci. 2016;19(4):171-8. [PubMed] [Google Scholar]

Raja V, Ravindran JK, Eapen A, William JS. Laboratoryevaluation of crude leaf extracts of Cassia occidentalis Linneaus (Caesalpinaceae) as an oviposition determinant and ovicide against vector mosquitoes Anopheles stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti Linneaus (Diptera: Culicidae). J Mosq Res. 2016;6(33). [Google Scholar]

Mbatchou VC, Tchouassi DP, Dickson RA, Annan K, Mensah AY, Amponsah IK, Jacob JW, Cheseto X, Habtemariam S, Torto B. Mosquito larvicidal activity of Cassia tora seed extract and its key anthraquinones aurantio-obtusin and obtusin. Parasit Vectors. 2017;10(1):562. [PubMed] [Google Scholar]

De Souza GA, da Silva NC, de Souza J, de Oliveira KR, da Fonseca AL, Baratto LC, Oliveira EC, Varotti FP, Moraes

P. In vitro and in vivo antimalarial potential of oleoresin obtained from Copaifera reticulata Ducke (Fabaceae) in the Brazilian Amazon rainforest. Phytomedicine. 2017;24:111-8. [PubMed] [Google Scholar]

Aldulaimi O, Uche FI, Hameed H, Mbye H, Ullah I, Drijfhout F, Claridge TD, Horrocks P, Li WW. A characterization of the antimalarial activity of the bark of Cylicodiscus gabunensis Harms. J Ethnopharmacol [Internet]. 2017 [cited 2022 May 8];198:221-5. Available from: http://dx.doi.org/10.1016/j.jep.2017.01.014 [PubMed] [Google Scholar]

Valentin BC, Salvius BA, Joseph KB, Philippe ON, Jean-Baptiste LS. Antiplasmodial, antioxidant and toxicological study of leaves extracts of Dalbergia katangensis Lecheneaud (Fabaceae) from Eastern DR Congo. GSC Adv Res Rev. 2020;4(2):34-45. [Google Scholar]

Abdullahi AR, Sani M, Abdussalam US, La B. Antiplasmodial activity and safety assessment of methanol leaf extract of Detarium microcarpum (Fabaceae). J Pharm Sci Drug Dev. 2020;2(1):2-9.

Valentin BC, Salvius BA, Henry MM, Joseph KB, Philippe ON, Jean-Baptiste LS. In vivo antiplasmodial and toxicological studies of Dialium angolense Welw. Ex Oliv. (Fabaceae) leaves extracts, a medicinal plant from Eastern Congo. World J Biol Pharm Health Sci [Internet]. 2020 [cited 2022 May 8];4(2):32-42. Available from: https://doi.org/10.30574/wjbphs.2020.4.2.0090 [Google Scholar]

Fadipe LA, Ajemba C, Lawal BA, Ahmadu AA, Ibikunle GF. Phytochemical and in-vivo antimalarial investigations of Dichrostachys cinerea (L.) Wight & Arn. (Fabaceae) root bark. Trop J Nat Prod Res. 2020;4(11):1007-14. [Google Scholar]

Kweyamba PA, Zofou D, Efange N, Assob JC, Kitau J, Nyindo M. In vitro and in vivo studies on anti-malarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region, Tanzania. Malar J [Internet]. 2019 [cited 2022 May 8];18(1):119. Available from: https://doi.org/10.1186/s12936-019-2752-8 [PubMed] [Google Scholar]

Alexandre LS, Oliveira MS, Dittz D, Sousa RW, Ferreira PMP Pessoa C, Varotti FP, Sanchez BA, Banfi FF, Chaves MH, Vieira Jr GM. Flavonoids, cytotoxic, and antimalarial activities of Dipteryx lacunifera. Rev Bras Farmacogn. 2020;30(4):544-50. [Google Scholar]

Ayisi F, Mensah CN, Borquaye LS. Antiplasmodial potential and safety evaluation of the ethanolic stem bark extract of Distemonanthus benthamianus Baill. (Leguminosae). Sci Afr [Internet]. 2021 [cited 2022 May 8];12:e00809. Available from: https://doi.org/10.1016/j.sciaf.2021.e00809 [Google Scholar]

Tomani JC, Bonnet O, Nyirimigabo A, Deschamps W, Tchinda AT, Jansen O, Ledoux A, Mukazayire MJ, Vanhamme L, Frederich M, Muganga R, Souopgui J. In vitro antiplasmodial and cytotoxic activities of compounds from the roots of Eriosema montanum Baker f. (Fabaceae). Molecules. 2021;26(9):2795. [PubMed] [Google Scholar]

Sazed SA, Islam O, Bliese SL, Hossainey MR, Shawon J, Mahmud A, Soma MA, Rashid MA, Rahman MS, Ghosh P, Alam MS. Exploratory analysis into the in vitro and in silico activity of E. fusca Lour. (Fabaceae) elucidates substantial antiplasmodial activity of the plant. Preprints [Internet]. 2021 [cited 2022 May 8]. Available from: https://link-springer-com.proxy.libraries.uc.edu/content/pdf/10.1007%2F978-3-642-19199-2.pdf [Google Scholar]

Ledoux A, Cao M, Jansen O, Mamede L, Campos PE, Payet B, Clerc P, Grondin I, Girard-Valenciennes E, Hermann T, Litaudon M, Vanderheydt C, Delang L, Neyts J, Leyssen P, Frédérich M, Smadja J. Antiplasmodial, anti-chikungunya virus and antioxidant activities of 64 endemic plants from the Mascarene Islands. Int J Antimicrob Agents. 2018;52(5):622-8. [PubMed] [Google Scholar]

Al-Quraishy S, Murshed M, Delic D, Al-Shaebi EM, Qasem MA, Mares MM, Dkhil MA. Plasmodium chabaudiinfected mice spleen response to synthesized silver nanoparticles from Indigofera oblongifolia extract. Lett Appl Microbiol. 2020;71(5):542-9. [PubMed] [Google Scholar]

Birru EM, Geta M, Gurmu AE. Antiplasmodial activity of Indigofera spicata root extract against Plasmodium berghei infection in mice. Malar J. 2017;16(1):198. [PubMed] [Google Scholar]

Daniel I, Innocent E, Sempombe J, Mugoyela V, Samwel B. Mosquito larvicidal activity of polar extracts from three Kotschya species against Anopheles gambiae s.s. Int J Mosq Res. 2020;7(3):29-33. [Google Scholar]

Samwel B, Innocent E, Machumi F, Kisinza WN, Heydenreich M. Isolation and characterization of mosquito larvicidal compounds from leaves of Kotschya uguenensis (Taub) F Whote. Int J Herb Med. 2019;7(6):1-4. [Google Scholar]

Jansen O, Tchinda AT, Loua J, Esters V, Cieckiewicz E, Ledoux A, Toukam PD, Angenot L, Tits M, Balde AM, Frederich M. Antiplasmodial activity of Mezoneuron benthamianum leaves and identification of its active constituents. J Ethnopharmacol [Internet]. 2017 [cited 2022 May 10];203:20-6. Available from: http://dx.doi.org/10.1016/j.jep.2017.03.021 [PubMed] [Google Scholar]

Ezim OE, Alagbe OV, Idih FM. Antimalarial activity of ethanol extract of Mucuna pruriens leaves on Nk65 chloroquine sensitive strain of Plasmodium berghei. J Complement Med Res. 2021;13(4):1-7. [Google Scholar]

Jimoh MA, Idris OA, Jimoh MO. Cytotoxicity, phytochemical, antiparasitic screening, and antioxidant activities of Mucuna pruriens (Fabaceae). Plants (Basel). 2020;9(9):1249. [PubMed] [Google Scholar]

Chepkirui C, Ochieng PJ, Sarkar B, Hussain A, Pal C, Yang LJ, Coghi P, Akala HM, Derese S, Ndakala A, Heydenreich M, Wong VK, Erdélyi M, Yenesew A. Antiplasmodial and antileishmanial flavonoids from Mundulea sericea. Fitoterapia. 2021;149:104796. [PubMed] [Google Scholar]

Govindarajan M, Benelli G. One-pot fabrication of silver nanocrystals using Ormocarpum cochin chinense biophysical characterization of a potent mosquitocidal and toxicity on non-target mosquito predators. J Asia Pac Entomol [Internet]. 2016 [cited 2022 May 12];19(2):377-85. Available from: http://dx.doi.org/10.1016/j.aspen.2016.04.003 [Google Scholar]

Batista R, Santana CC, Azevedo-Santos AV, Suarez-Fontes AM, Ferraz JL, Silva LA, Vannier-Santos MA. In vivoantimalarial extracts and constituents of Prosopis juliflora (Fabaceae). J Funct Foods [Internet]. 2018 [cited 2022 May 15];44:74-8. Available from: https://doi.org/10.1016/j.jff.2018.02.032 [Google Scholar]

Noufou O, André T, Richard SW, Yerbanga S, Maminata T, Ouédraogo S, Anne EH, Irene G, Pierre GI. Antiinflammatory and anti-plasmodial activities of methanol extract of Pterocarpus erinaceus Poir. (Fabaceae) leaves. Int J Pharmacol. 2016;12(5):549-55. [Google Scholar]

Daskum AM, Godly C, Qadeer MA, Ling LY. Effect of Senna occidentalis (Fabaceae) leaves extract on the formation of β - hematin and evaluation of in vitro antimalarial activity. Int J Herb Med. 2019;7(3):46-51. [Google Scholar]

Hiben MG, Sibhat GG, Fanta BS, Gebrezgi HD, Tesema SB. Evaluation of Senna singueana leaf extract as an alternative or adjuvant therapy for malaria. J Tradit Complement Med [Internet]. 2016 [cited 2022 May 10];6(1):112-7. Available from: http://dx.doi.org/10.1016/j.jtcme. 2014.11.014 [PubMed] [Google Scholar]

Abubakar AR, Haque M. Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci [Internet]. 2020 [cited 2022 May 10];12(1):1-10. Available from: https://pubmed.ncbi.nlm.nih.gov/32801594 [PubMed] [Google Scholar]

Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett [Internet]. 2016 [cited 2022 May 15];11(1):40. Available from: http://dx.doi.org/10.1186/s11671-016-1257-4 [PubMed] [Google Scholar]

Sardana M, Agarwal V, Pant A, Kapoor V, Pandey KC, Kumar S. Antiplasmodial activity of silver nanoparticles: a novel green synthesis approach, Asian Pac J Trop Biomed. 2018;8(5):268-72. [Google Scholar]

Metwally DM, Alajmi RA, El-Khadragy MF, Al-Quraishy S. Silver nanoparticles biosynthesized with Salvia officinalis leaf exert protective effect on Hepatic tissue injury induced by Plasmodium chabaudi. Front Vet Sci. 2021;7:620665. [PubMed] [Google Scholar]

Murshed M, Dkhil MA, Al-Shaebi EM, Qasem MA, Mares MM, Aljawdah HM, Alojayri G, Abdel-Gaber R, Al-Quraishy S. Biosynthesized silver nanoparticles regulate the iron status in the spleen of Plasmodium chabaudi–infected mice. Environ Sci Pollut Res. 2020;27:40054-60. [PubMed] [Google Scholar]

Published
2022-12-31