Pathogenesis of the SARS Coronavirus-2 and Potential Therapeutic Strategies

  • Saqib Iqbal Faculty of Medicine, Medical University of Sofia, 2 Zdrave Street, Sofia 1431, Bulgaria.
  • Morteza Saki Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
  • Ivo Sirakov Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Street, Sofia 1431, Bulgaria.
  • Sousan Akrami Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Keywords: SARS-CoV-2, Pathogenesis, Therapeutic Strategies

Abstract

The recent outbreak of severe acute respiratory syndrome (SARS) belongs to a broad family of viruses known as Coronaviridae. SARSCoV- 2 is an emerging global pandemic with a relatively low mortality rate. The virus has been mutated in a unique manner thus prolonging its search for its vaccine and drug therapy. SARS-CoV-2 is an enveloped virus consisting of many spike (S) proteins, which mediates its fusion to the membrane of the host cell. Its ‘crown-like’ appearance under an electron microscope has led to its name. The clinical symptoms that patients experience would be due to their central immune response to the infection. Pro-inflammatory cytokines play an essential role in cell growth and regulation of the immune system. However, its abundance could contribute to pathological conditions which can cause further injury and possible death. This brief review discusses the pathogenesis of the SARS-CoV-2 along with receptors that can be potentially targeted by therapeutic strategies, inhibiting the membrane fusion, genome replication and immune response.

How to cite this article:
Iqbal S, Saki M, Sirakov I, Akrami S. Pathogenesis of the SARS Coronavirus and Potential Therapeutic Strategies. Special Issue - COVID-19 & Other Communicable Disease. 2022;202-209.

DOI: https://doi.org/10.24321/0019.5138.202232

References

Hu B, Ge X, Wang LF, Shi Z. Bat origin of human coronaviruses. Virol J. 2015 Dec;12(1):221. [PubMed] [Google Scholar]

Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and

coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020 Mar;55(3):105924. [PubMed] [Google Scholar]

Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARSCoV- 2 and COVID-19. Nat Rev Microbiol. 2021 Mar;19(3):141-54. [PubMed] [Google Scholar]

Li YD, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020 Dec;27(1):1-23. [PubMed] [Google Scholar]

El-Sayed A, Kamel M. Coronaviruses in humans and animals: the role of bats in viral evolution. Environ Sci Pollut Res. 2021 Apr;28(16):19589-600. [PubMed] [Google Scholar]

Sironi M, Hasnain SE, Rosenthal B, Phan T, Luciani F, Shaw MA, Sallum MA, Mirhashemi ME, Morand S, González-Candelas F; Editors of Infection, Genetics and Evolution. SARS-CoV-2 and COVID-19: a genetic, epidemiological, and evolutionary perspective. Infect Genet Evol. 2020 Oct;84:104384. [PubMed] [Google Scholar]

Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020 Apr;176:104742. [PubMed] [Google Scholar]

V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021 Mar;19:155-70. [PubMed] [Google Scholar]

Astuti I, Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr. 2020 Jul-Aug;14(4):407-12. [PubMed] [Google Scholar]

Chi PI, Liu HJ. Molecular signaling and cellular pathways for virus entry. Int Sch Res Notices. 013;2013:306595. [Google Scholar]

Boulant S, Stanifer M, Lozach PY. Dynamics of virusreceptor interactions in virus binding, signaling, and endocytosis. Viruses. 2015 Jun;7(6):2794-815. [PubMed] [Google Scholar]

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH,

Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARSCoV- 2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.

Cell. 2020 Apr;181(2):271-280.e8. [PubMed] [Google Scholar]

Saponaro F, Rutigliano G, Sestito S, Bandini L, Storti B, Bizzarri R, Zucchi R. ACE2 in the era of SARS-CoV-2:

controversies and novel perspectives. Front Mol Biosci. 2020 Sep;7:588618. [PubMed] [Google Scholar]

Arslan M, Xu B, Gamal El-Din M. Transmission of SARS-CoV-2 via fecal-oral and aerosols-borne routes: environmental dynamics and implications for wastewater management in underprivileged societies. Sci Total Environ. 2020 Nov;743:140709. [PubMed] [Google Scholar]

Wang P, Luo R, Zhang M, Wang Y, Song T, Tao T, Li Z, Jin L, Zheng H, Chen W, Zhao M, Zheng Y, Qin J. A cross-talk between epithelium and endothelium mediates human alveolar–capillary injury during SARS-CoV-2 infection.

Cell Death Dis. 2020 Dec;11(12):1-7. [PubMed] [Google Scholar]

Wang Q, Wu J, Wang H, Gao Y, Liu Q, Mu A, Ji W, Yan L, Zhu Y, Zhu C, Fang X, Yang X, Huang Y, Gao H, Liu F,

Ge J, Sun Q, Yang X, Xu W, Liu Z, Yang H, Lou Z, Jiang B, Guddat LW, Gong P, Rao Z. Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell. 2020 Jul;182(2):417-28. [PubMed] [Google Scholar]

Trinchieri G. Type I interferon: friend or foe? J Exp Med. 2010 Sep;207(10):2053. [PubMed] [Google Scholar]

Li L, Li J, Gao M, Fan H, Wang Y, Xu X, Chen C, Liu J, Kim J, Aliyari R, Zhang J, Jin Y, Li X, Ma F, Shi M, Cheng G, Yang H. Interleukin-8 as a biomarker for disease prognosis of coronavirus disease-2019 patients. Front Immunol.

Jan;11:3432. [PubMed] [Google Scholar]

Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020 Aug;54:62-75. [PubMed] [Google Scholar]

Song WJ, Hui CKM, Hull JH, Birring SS, McGarvey L, Mazzone SB, Chung KF. Confronting COVID-19-

associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir Med. 2021 May;9(5):533-44. [PubMed] [Google Scholar]

El-Mikkawy DM, EL-Sadek MA, EL-Badawy MA, Samaha D. Circulating level of interleukin-6 in relation to body

mass indices and lipid profile in Egyptian adults with overweight and obesity. Egypt Rheumatol Rehabil. 2020;47(1):1-7. [Google Scholar]

Owen-Woods C, Joulia R, Barkaway A, Rolas L, Ma B, Nottebaum AF, Arkill KP, Stein M, Girbl T, Golding M, Bates DO, Vestweber D, Voisin MB, Nourshargh S. Local microvascular leakage promotes trafficking of

activated neutrophils to remote organs. J Clin Invest. 2020 May;130(5):2301-18. [PubMed] [Google Scholar]

Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee

CS. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019 Mar;5(1):1-22. [PubMed] [Google Scholar]

Dhont S, Derom E, Van Braeckel E, Depuydt P, Lambrecht BN. The pathophysiology of ‘happy’ hypoxemia in

COVID-19. Respir Res. 2020 Jul;21(1):1-9. [PubMed] [Google Scholar]

Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021 Apr;184(7):1671-92. [PubMed] [Google Scholar]

Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: a review. J Infect Public Health. 2020 Nov;13(11):1619-29. [PubMed] [Google Scholar]

Porzionato A, Emmi A, Stocco E, Barbon S, Boscolo-Berto R, Macchi V, De Caro R. The potential role of the carotid body in COVID-19. Am J Physiol Lung Cell Mol Physiol. 2020 Oct;319(4):L620-6. [PubMed] [Google Scholar]

Xu W, Sun NN, Gao HN, Chen ZY, Yang Y, Ju B, Tang LL. Risk factors analysis of COVID-19 patients with ARDS

and prediction based on machine learning. Sci Rep. 2021 Feb;11(1):1-2. [PubMed] [Google Scholar]

Navdeep K, Simranpreet K, Manjinder K. A review on the fifth pandemic: coronavirus. Asian J Pharm Clin

Res. 2020;13(12):25-31. [Google Scholar]

Kifle ZD, Ayele AG, Enyew EF. Drug repurposing approach, potential drugs, and novel drug targets for COVID-19 treatment. J Environ Public Health. 2021 Apr;2021:6631721. [PubMed] [Google Scholar]

Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV - a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009 Mar;7(3):226-36. [PubMed] [Google Scholar]

Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis of receptor recognition

by SARS-CoV-2. Nature. 2020 May;581(7807):221-4. [PubMed] [Google Scholar]

Du L, Kao RY, Zhou Y, He Y, Zhao G, Wong C, Jiang S, Yuen KY, Jin DY, Zheng BJ. Cleavage of spike protein of

SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem Biophys Res Commun. 2007 Jul;359(1):174-79. [PubMed] [Google Scholar]

Mengist HM, Dilnessa T, Jin T. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem. 2021 Mar;9:622898. [PubMed] [Google Scholar]

Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr;368(6489):409-12. [PubMed] [Google Scholar]

Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein:potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020 Sep;41(9):1141-49. [PubMed] [Google Scholar]

Barrantes FJ. While we wait for a vaccine against SARSCoV- 2, why not think about available drugs? Front Physiol. 2020 Jul;11:820. [PubMed] [Google Scholar]

Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr, Nunneley JW, Barnard D, Pöhlmann S, McKerrow JH, Renslo AR, Simmons G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015 Apr;116:76-84. [PubMed] [Google Scholar]

Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother. 2020 May;64(6):e00754-20. [PubMed] [Google Scholar]

Yamamoto M, Kiso M, Sakai-Tagawa Y, Iwatsuki- Horimoto K, Imai M, Takeda M, Kinoshita N, Ohmagari

N, Gohda J, Semba K, Matsuda Z, Kawaguchi Y, Kawaoka Y, Inoue JI. The anticoagulant nafamostat potently

inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a celltype-dependent manner. Viruses. 2020 Jun;12(6):629.

[PubMed] [Google Scholar]

Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI, Matsuda Z. Identification of nafamostat as

a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using

the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother. 2016 Oct;60(11):6532-9. [PubMed]

[Google Scholar]

Xu L, Tong J, Wu Y, Zhao S, Lin BL. A computational evaluation of targeted oxidation strategy (TOS) for potential inhibition of SARS-CoV-2 by disulfiram and analogues. Biophys Chem. 2021 Sep;276:106610.

[PubMed] [Google Scholar]

Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao

Z, Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020 Jun;582:289-

[PubMed] [Google Scholar]

Osipiuk J, Azizi SA, Dvorkin S, Endres M, Jedrzejczak R, Jones KA, Kang S, Kathayat RS, Kim Y, Lisnyak VG,

Maki SL, Nicolaescu V, Taylor CA, Tesar C, Zhang YA,

Zhou Z, Randall G, Michalska K, Snyder SA, Dickinson BC, Joachimiak A. Structure of papain-like protease

from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nature Commun. 2021 Feb;12(1):1-9.

[PubMed] [Google Scholar]

Bosken YK, Cholko T, Lou YC, Wu KP, Chang CE. Insights into dynamics of inhibitor and ubiquitin-like

roteinbinding in SARS-CoV-2 papain-like protease. Front Mol Biosci. 2020 Aug;7:174. [PubMed] [Google Scholar]

Chen X, Chou CY, Chang GG. Thiopurine analogue inhibitors of severe acute respiratory yndromecoronavirus

papain-like protease, a deubiquitinating and deISGylating enzyme. Antivir Chem Chemother. 2009;19(4):151-6. [PubMed] [Google Scholar]

Timmer A, Patton PH, Chande N, McDonald JW, MacDonald JK. Azathioprine and 6â€mercaptopurine for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2016;2016(5):CD000478. [PubMed]

[Google Scholar]

Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, Pia L,

Risson E, Saffern M, Salomé B, Esai Selvan M, Spindler MP, Tan J, van der Heide V, Gregory JK, Alexandropoulos

K, Bhardwaj N, Brown BD, Greenbaum B, Gümüş ZH, Homann D, Horowitz A, Kamphorst AO, Curotto de Lafaille MA, Mehandru S, Merad M, Samstein RM; Sinai Immunology Review Project. Immunology of COVID-19: current state of the science. Immunity. 2020 Jun;52(6):910-41. [PubMed] [Google Scholar]

Icenogle T. COVID-19: infection or autoimmunity. Front Immunol. 2020 Sep;11:2055. [PubMed] [Google

Scholar]

Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing

a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther.

May;5(1):84. [PubMed] [Google Scholar]

Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19

immunopathology–current perspectives. Pulmonology. 2021 Sep-Oct;27(5):423-37. [PubMed] [Google Scholar]

Battagello DS, Dragunas G, Klein MO, Ayub AL, Velloso FJ, Correa RG. Unpuzzling COVID-19: tissue-related

signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond). 2020 Aug;134(16):2137-60. [PubMed] [Google Scholar]

Mehta P, Ciurtin C, Scully M, Levi M, Chambers RC. JAK inhibitors in COVID-19: the need for vigilance regarding increased inherent thrombotic risk. Eur Respir J. 2020 Sep;56(3):2001919. [PubMed] [Google Scholar]

Yang CW, Lee YZ, Hsu HY, Shih C, Chao YS, Chang HY, Lee SJ. Targeting coronaviral replication and cellular JAK2 mediated dominant NF-κB activation for comprehensive and ultimate inhibition of coronaviral activity. Sci Rep. 2017 Jun;7(1):1-3. [PubMed] [Google Scholar]

Stebbing J, Sánchez Nievas G, Falcone M, Youhanna S, Richardson P, Ottaviani S, Shen JX, Sommerauer C, Tiseo G, Ghiadoni L, Virdis A, Monzani F, Rizos LR, Forfori F, Avendaño Céspedes A, De Marco S, Carrozzi

L, Lena F, Sánchez-Jurado PM, Lacerenza LG, Cesira N, Caldevilla Bernardo D, Perrella A, Niccoli L, Méndez LS,

Matarrese D, Goletti D, Tan YJ, Monteil V, Dranitsaris G, Cantini F, Farcomeni A, Dutta S, Burley SK, Zhang H,

Pistello M, Li W, Romero MM, Andrés Pretel F, Simón-Talero RS, García-Molina R, Kutter C, Felce JH, Nizami

ZF, Miklosi AG, Penninger JM, Menichetti F, Mirazimi A, Abizanda P, Lauschke VM. JAK inhibition reduces SARSCoV-

liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci Adv. 2021 Jan;7(1):eabe4724. [PubMed] [Google Scholar]

Hasan MJ, Rabbani R, Anam AM, Huq SM. Additional baricitinib loading dose improves clinical outcome in

COVID-19. Open Med (Wars). 2021 Dec;16(1):41-6. [PubMed] [Google Scholar]

Fragoulis GE, McInnes IB, Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases,

beyond rheumatoid arthritis. Rheumatology (Oxford). 2019 Feb;58(Suppl 1):i43-i54.[PubMed] [Google

Scholar]

Lechowicz K, Drożdżal S, Machaj F, Rosik J, Szostak B, Zegan-Barańska M, Biernawska J, Dabrowski W, Rotter I, Kotfis K. COVID-19: the potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection. J Clin Med. 2020 Jun;9(6):1917. [PubMed] [Google Scholar]

Patel S, Wadhwa M. Therapeutic use of specific tumour necrosis factor inhibitors in inflammatory diseases

including COVID-19. Biomed Pharmacother. 2021 Aug;140:111785. [PubMed] [Google Scholar]

Published
2022-03-16