Genetic Diversity and Population Structure of Rattus rattus and Rattus tanezumi in Sporadic Leptospirosis Areas of Central Java, Indonesia
Abstract
Introduction: Rattus rattus and Rattus tanezumi are important vectors of leptospirosis, a zoonotic disease of public health concern in Indonesia. This study investigated the genetic diversity and population structure of these two rat species in Purworejo Regency, Central Java, an area that experienced a leptospirosis outbreak in 2023 with the highest case fatality rate in the province.
Method: Rats were trapped in two villages with contrasting ecological settings: Dadirejo (hilly terrain with plantations) and Kutoarjo (densely populated urban area). Mitochondrial cytochrome b gene sequences were analyzed to assess phylogenetic relationships, genetic diversity, and population structure.
Results: Phylogenetic analysis revealed distinct evolutionary lineages for R. rattus and R. tanezumi, with R. tanezumi exhibiting greater intraspecific genetic diversity. Haplotype and nucleotide diversity indices indicated higher genetic variation in R. tanezumi compared to R. rattus. Analysis of molecular variance (AMOVA) showed strong genetic differentiation among R. rattus populations (FST = 0.973), suggesting limited gene flow and potential multiple introduction events. In contrast, R. tanezumi displayed greater connectivity among central
Java populations but substantial differentiation from Jakarta and Sulawesi populations. These distinct genetic profiles may influence the spatial heterogeneity of leptospirosis cases across Purworejo’s sub-districts. The higher genetic diversity in R. tanezumi could enhance its adaptability and reservoir potential, while the genetic isolation of R. rattus populations may lead to location-specific pathogen strains.
Conclusion: These findings underscore the importance of considering rat population genetics in understanding leptospirosis transmission dynamics and designing effective control strategies.
How to cite this article:
Nuranindita R, Hitipeuw D, Martini, Raharjo M, Cahyani N K D, Muh F. Genetic Diversity and Population Structure of Rattus rattus and Rattus tanezumi in Sporadic Leptospirosis Areas of Central Java, Indonesia. J Commun Dis.
2025;57(3):78-88.
DOI: https://doi.org/10.24321/0019.5138.202571
References
2. Han BA, Schmidt JP, Bowden SE, Drake JM, Levin SA, Designed JMD. Rodent reservoirs of future zoonotic diseases. 2015;112(22):7039–44.
3. Pagès M, Chaval Y, Herbreteau V, Waengsothorn S, Cosson JF, Hugot JP, et al. Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries [Internet]. Vol. 10, BMC Evolutionary Biology. 2010. Available from: http://www.biomedcentral.com/1471-2148/10/184
4. Kosoy M, Khlyap L, Cosson JF, Morand S. Aboriginal and invasive rats of genus rattus as hosts of infectious agents. In: Vector-Borne and Zoonotic Diseases. Mary Ann Liebert Inc.; 2015. p. 3–12.
5. Hotez P, Aksoy S. PLOS Neglected Tropical Diseases: Ten years of progress in neglected tropical disease control and elimination … More or less. Vol. 11, PLoS Neglected Tropical Diseases. Public Library of Science; 2017.
6. Nugraha KWD, Seviana T, Sibuea F, Manullang EV, Wardah, Indrayani YA, et al. Profil Kesehatan Indonesia 2022. Jakarta; 2023. Kementrian Kesehatan Republik Indonesia.
7. Purworejo Regency Health Office. Leptospirosis Case Data of Purworejo District 2023. Purworejo; 2023.
8. Puckett EE, Park J, Combs M, Blum MJ, Bryant JE, Caccone A, et al. Global population divergence and admixture of the brown rat (Rattus norvegicus). Proceedings of the Royal Society B: Biological Sciences. 2016 Oct 26;283(1841).
9. Lack JB, Greene DU, Conroy CJ, Hamilton MJ, Braun JK, Mares MA, et al. Invasion facilitates hybridization with introgression in the Rattus rattus species complex. Mol Ecol. 2012 Jul;21(14):3545–61.
10. Galan M, Pagès M, Cosson JF. Next-Generation Sequencing for Rodent Barcoding: Species Identification from Fresh, Degraded and Environmental Samples. PLoS One. 2012 Nov 7;7(11).
11. Liu Y, YL, CY, CX, ZM, LY, & ZX. Genetic differentiation of geographic populations of Rattus tanezumi based on the mitochondrial Cytb gene. PLoS One. 2021;16(3).
12. Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, Tamura K. MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Mol Biol Evol [Internet]. 2024 Dec 21;41(12). Available from: http://www.ncbi.nlm.nih.gov/pubmed/39708372
13. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice [Internet]. Vol. 22, Nucleic Acids Research. 1994. Available from: https://academic.oup.com/nar/article/22/22/4673/2400290
14. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017 Dec 1;34(12):3299–302.
15. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics [Internet]. 1989 Nov 1;123(3):585–95. Available from: https://doi.org/10.1093/genetics/123.3.585
16. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics [Internet]. 1993 Mar 1;133(3):693–709. Available from: https://doi.org/10.1093/genetics/133.3.693
17. Fu YX. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics [Internet]. 1997 Oct 1;147(2):915–25. Available from: https://doi.org/10.1093/genetics/147.2.915
18. Leigh JW, Bryant D. POPART: Full-feature software for haplotype network construction. Methods Ecol Evol. 2015 Sep 1;6(9):1110–6.
19. Excoffier L, Lischer Hel. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour [Internet]. 2010 May 1;10(3):564–7. Available from: https://doi.org/10.1111/j.1755-0998.2010.02847.x
20. Wright S. Evolution and the genetics of populations, Vol. 4: Variability within and among natural populations. Chicago: University of Chicago Press; 1978.
21. Aplin KP, Suzuki H, Chinen AA, Chesser RT, ten Have J, Donnellan SC, et al. Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS One. 2011 Nov 2;6(11).
22. Thomson V, Aplin KP, Cooper A, Hisheh S, Suzuki H, Maryanto I, et al. Molecular genetic evidence for the place of origin of the pacific rat, Rattus exulans. PLoS One. 2014 Mar 17;9(3).
23. Pergams ORW, Byrn D, Lee KLY, Jackson R. Rapid morphological change in black rats (Rattus rattus) after an island introduction. PeerJ. 2015;2015(3).
24. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, et al. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Negl Trop Dis. 2015 Sep 17;9(9).
Copyright (c) 2025 Journal of Communicable Diseases (E-ISSN: 2581-351X & P-ISSN: 0019-5138)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.