Evaluation of Susceptibility of Candida species to Six Antifungal Drugs in Iraqi Specimens

  • Dhiey A Al-Aameri Mustansiriyah University, Quality Assurance and Performance Evaluation Department.
  • Shaymaa A Zghair National Center for Educational Laboratories, Baghdad, Iraq.
  • Bareq N Al-Nuaimi Al-Iraqia University, College of Medicine, Department of Microbiology.
  • Murtadha N Abdul-Ghani Mustansiriyah University, College of Medicine, Department of Microbiology.
  • Ziad Tareq Naman Mustansiriyah University, College of Medicine, Department of Microbiology.
  • Zainab Jummah Fadhil Al-Iraqia University, College of Medicine, Department of Microbiology.
Keywords: Antifungals, Candida, Susceptibility, Resistance, Diseases

Abstract

Introduction: Candida spp. has become increasingly resistant to antifungal drugs, with elevated MIC levels causing a negative medical impact and increasing the number of patients at risk of candidiasis. According to the
CDC, about 7% of Candida blood samples show reduced susceptibility to fluconazole. Monitoring the antifungal resistance profile of Candida spp. is vital, as non-Albicans species may limit treatment options.
Objective: Evaluate the antifungal effectiveness against clinical Candida spp. isolates of six antifungals: amphotericin B, fluconazole, voriconazole, itraconazole, caspofungin, and 5-fluorocytosine.
Methods: 100 samples were collected from various clinical samples at the National Centre of Teaching Laboratories in Baghdad, Iraq, from May to December 2023. The effectiveness of six antifungals (fluconazole
(FLC), itraconazole (ITR), voriconazole (VRC), amphotericin B (AMB), caspofungin (CAS), and 5-fluorocytosine (5-FC)) was tested using the MA120 Automated ID and AST System (Render) according to CLSI
standards.
Results: Out of 100 isolates, nine Candida species were identified: C. albicans (54%), C. glabrata (20%), C. dubliniensis (10%), C. tropicalis (6%), C. krusei (5%), C. parapsilosis (2%), and C. rugosa, C. lusitaniae, and C. kyfer (each 1%). The non-susceptible rates to the six antifungals were: 5-FC (42%), FLC (21% intermediate, 9% resistant), AMB (11%), ITR (8%), VRC (6%), CAS (4% intermediate, 1% resistant).
Conclusion: We observed increased resistance rates to 5-FC, FLC, ITR, AMB, and VRC, but not to caspofungin. C. albicans showed a high 5-FC non-WT phenotype (72%) with elevated MIC values, while C. glabrata had a 7% non-WT rate against AMB. C. tropicalis and C. parapsilosis revealed limited susceptibility to azoles.

How to cite this article:
Al-Ameri A D, zghair A S, Al-Nuaimi N B , Adbdul
Ghani N M, Naman T Z, Fadhil J Z . Evaluation
of Susceptibility of Candida species to Six
Antifungal Drugs in Iraqi Specimens.

DOI: https://doi.org/10.24321/0019.5138.202432

References

Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis. 2005;41(9):1232-9. [PubMed] [Google Scholar]

Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 2002;50(4):243-60. [PubMed] [Google Scholar]

Pfaller MA, Rhomberg PR, Messer SA, Jones RN, Castanheira M. Isavuconazole, micafungin, and 8

comparator antifungal agents’ susceptibility profiles for common and uncommon opportunistic fungi

collected in 2013: temporal analysis of antifungal drug resistance using CLSI species-specific clinical

breakpoints and proposed epidemiological cutoff values. Diagn Microbiol Infect Dis. 2015;82(4):303-

[PubMed] [Google Scholar]

Perfect JR. Antifungal resistance: the clinical front. Oncology (Williston Park). 2004;18(14 Suppl 13):15-22.

[PubMed] [Google Scholar]

Wiederhold NP. The antifungal arsenal: alternative drugs and future targets. Int J Antimicrob Agents.

;51(3):333-9. [PubMed] [Google Scholar]

Lockhart SR, Berkow EL, Chow N, Welsh RM. Candida auris for the clinical microbiology laboratory: not your

grandfather’s Candida species. Clin Microbiol Newsl. 2017;39(13):99-103. [PubMed] [Google Scholar]

Shor E, Perlin DS. Coping with stress and the emergence of multidrug resistance in fungi. PLoS Pathog.

;11(3):e1004668. [PubMed] [Google Scholar]

Al-Aameri D, Al-Nuaimi BN. Mutations in ergosterol 11

gene of fluconazole resistant Candida albicans isolated from different clinical samples. Malays J Biochem Mol Biol. 2020;23(1):57-61.

Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance:

prevalence, mechanisms, and management. Lancet

Infect Dis. 2017;17(12):e383-92. [PubMed] [Google

Scholar]

Lee KK, Kubo K, Abdelaziz JA, Cunningham I, Dantas

A, Chen X, Okada H, Ohya Y, Gow NA. Yeast species-

specific, differential inhibition of b-1,3-d-glucan

synthesis by poacic acid and caspofungin. Cell Surf.

;3:12-25. [PubMed] [Google Scholar]

Eliopoulos GM, Perea S, Patterson TF. Antifungal

resistance in pathogenic fungi. Clin Infect Dis.

;35(9):1073-80. [PubMed] [Google Scholar]

Perlin DS. Resistance to echinocandin-class antifungal

drugs. Drug Resist Updat. 2007;10(3):121-30. [PubMed]

[Google Scholar]

Marak MB, Dhanashree B. Antifungal susceptibility

and biofilm production of Candida spp. isolated from

clinical samples. Int J Microbiol. 2018;2018:7495218.

[PubMed] [Google Scholar]

Castanheira M, Woosley LN, Diekema DJ, Messer SA,

Jones RN, Pfaller MA. Low prevalence of fks1 hot spot 1

mutations in a worldwide collection of Candida strains.

Antimicrob Agents Chemother. 2010;54(6):2655-9.

[PubMed] [Google Scholar]

Vincent BM, Lancaster AK, Scherz-Shouval R,

Whitesell L, Lindquist S. Fitness trade-offs restrict the

evolution of resistance to amphotericin B. PLoS Biol.

;11(10):e1001692. [PubMed] [Google Scholar]

Carolus H, Pierson S, Lagrou K, Van Dijck P.

Amphotericin B and other polyenes-discovery, clinical

use, mode of action and drug resistance. J Fungi (Basel).

;6(4):321. [PubMed] [Google Scholar]

Park BJ, Arthington-Skaggs BA, Hajjeh RA, Iqbal N, Ciblak

MA, Lee-Yang W, Hairston MD, Phelan M, Plikaytis

BD, Sofair AN, Harrison LH, Fridkin SK, Warnock DW.

Evaluation of amphotericin B interpretive breakpoints

for Candida bloodstream isolates by correlation with

therapeutic outcome. Antimicrob Agents Chemother.

;50(4):1287-92. [PubMed] [Google Scholar]

Martins MD, Rex JH. Resistance to antifungal agents

in the critical care setting: problems and perspectives.

New Horiz. 1996;4(3):338-44. [PubMed] [Google

Scholar]

Morace G, Perdoni F, Borghi E. Antifungal drug

resistance in Candida species. J Glob Antimicrob Resist.

;2(4):254-9. [PubMed] [Google Scholar]

Bennett JE. Chemotherapy of systemic mycoses (first of

two parts). N Engl J Med. 1974;290(1):30-2. [PubMed]

[Google Scholar]

Perea S, Patterson TF. Antifungal resistance in

pathogenic fungi. Clin Infect Dis. 2002;35(9):1073-80.

Pfaller MA, Espinel-Ingroff A, Canton E, Castanheira M,

Cuenca-Estrella M, Diekema DJ, Fothergill A, Fuller J, Ghannoum M, Jones RN, Lockhart SR, Martin-Mazuelos

E, Melhem MS, Ostrosky-Zeichner L, Pappas P, Pelaez T,

Peman J, Rex J, Szeszs MW. Wild-type MIC distributions

and epidemiological cutoff values for amphotericin

B, flucytosine, and itraconazole and Candida spp. as

determined by CLSI broth microdilution. J Clin Microbiol.

;50(6):2040-6. [PubMed] [Google Scholar]

Pfaller MA, Messer SA, Woosley LN, Jones RN,

Castanheira M. Echinocandin and triazole antifungal

susceptibility profiles for clinical opportunistic yeast and

mold isolates collected from 2010 to 2011: application

of new CLSI clinical breakpoints and epidemiological

cutoff values for characterization of geographic

and temporal trends of antifungal resistance. J Clin

Microbiol. 2013;51(8):2571-81. [PubMed] [Google

Scholar]

Pfaller MA, Diekema DJ. Progress in antifungal

susceptibility testing of Candida spp. by use of

Clinical and Laboratory Standards Institute broth

microdilution methods, 2010 to 2012. J Clin Microbiol.

;50(9):2846-56. [PubMed] [Google Scholar]

Ng KP, Kuan CS, Kaur H, Na SL, Atiya N, Velayuthan RD.

Candida species epidemiology 2000–2013: a laboratory-

based report. Trop Med Int Health. 2015;20(11):1447-

[PubMed] [Google Scholar]

Ghazi S, Rafei R, Osman M, El Safadi D, Mallat H,

Papon N, Dabboussi F, Bouchara JP, Hamze M. The

epidemiology of Candida species in the Middle East

and North Africa. J Mycol Med. 2019;29(3):245-52.

[PubMed] [Google Scholar]

Yang CW, Barkham TM, Chan FY, Wang Y. Prevalence

of Candida species, including Candida dubliniensis,

in Singapore. J Clin Microbiol. 2003;41(1):472-4.

[PubMed] [Google Scholar]

Ortiz B, Aguilar K, Galindo C, Molina L, Fontecha

G. Candida species isolated from clinical samples

in a tertiary hospital in Honduras: where is Candida

auris? Curr Med Mycol. 2022;8(3):1-8. [PubMed]

[Google Scholar]

Al-Khazali MT, Hassan BM, AbedIbrahim SA. Molecular

identification of Candida albicans and C. dubliniensis

using small subunit rRNA gene sequence in Kerbala,

Iraq. Arch Razi Inst. 2023;78(3):1035-40. [PubMed]

[Google Scholar]

Pfaller MA, Diekema DJ. Epidemiology of invasive

mycoses in North America. Crit Rev Microbiol.

;36(1):1-53. [PubMed] [Google Scholar]

Zimbeck AJ, Iqbal N, Ahlquist AM, Farley MM, Harrison

LH, Chiller T, Lockhart SR. FKS mutations and elevated

echinocandin MIC values among Candida glabrata

isolates from U.S. population-based surveillance.

Antimicrob Agents Chemother. 2010;54(12):5042-7.

[PubMed] [Google Scholar]

Pfaller MA, Diekema DJ. Epidemiology of invasive

candidiasis: a persistent public health problem. Clin

Microbiol Rev. 2007;20(1):133-63. [PubMed] [Google

Scholar]

Barchiesi F, Arzeni D, Caselli F, Scalise G. Primary

resistance to flucytosine among clinical isolates

of Candida spp. J Antimicrob Chemother.

;45(3):408-9. [PubMed] [Google Scholar]

Hii IM, Chang HL, Lin LC, Lee YU, Liu YM, Liu CE, Chen

CH, Cheng YR, Chang CY. Changing epidemiology of

candidemia in a medical center in middle Taiwan.

J Microbiol Immunol Infect. 2015;48(3):306-15.

[PubMed] [Google Scholar]

Huang YT, Liu CY, Liao CH, Chung KP, Sheng WH, Hsueh

PR. Antifungal susceptibilities of Candida isolates

causing bloodstream infections at a medical center

in Taiwan, 2009–2010. Antimicrob Agents Chemother.

;58(7):3814-9. [PubMed] [Google Scholar]

Xiao M, Fan X, Chen SC, Wang H, Sun ZY, Liao K, Chen

SL, Yan Y, Kang M, Hu ZD, Chu YZ, Hu TS, Ni YX, Zou GL,

Kong F, Xu YC. Antifungal susceptibilities of Candida

glabrata species complex, Candida krusei, Candida

parapsilosis species complex and Candida tropicalis

causing invasive candidiasis in China: 3 year national

surveillance. J Antimicrob Chemother. 2015;70(3):802-

[PubMed] [Google Scholar]

Ahmad S, Joseph L, Parker JE, Asadzadeh M, Kelly SL,

Meis JF, Khan Z. ERG6 and ERG2 are major targets

conferring reduced susceptibility to amphotericin B in

clinical Candida glabrata isolates in Kuwait. Antimicrob

Agents Chemother. 2019;63(2):e01900-18. [PubMed]

[Google Scholar]

Khan Z, Ahmad S, Joseph L, Chandy R. Candida

dubliniensis: an appraisal of its clinical significance as

a bloodstream pathogen. PLoS One. 2012;7(3):e32952.

[PubMed] [Google Scholar]

Khalifa HO, Hubka V, Watanabe A, Nagi M, Miyazaki Y,

Yaguchi T, Kamei K. Prevalence of antifungal resistance,

genetic basis of acquired azole and echinocandin

resistance, and genotyping of Candida krusei recovered

from an international collection. Antimicrob Agents

Chemother. 2022;66(2):e0185621. [PubMed] [Google

Scholar]

Habibzadeh A, Lankarani KB, Farjam M, Akbari M,

Kashani SM, Karimimoghadam Z, Wang K, Imanieh

MH, Tabrizi R, Ahmadizar F. Prevalence of fungal

drug resistance in COVID-19 infection: a global meta-

analysis. Curr Fungal Infect Rep. 2022;16(4):154-64.

[PubMed] [Google Scholar]

Al-Nuaimi BN, Abdul-Ghani MN, Al-Asadi AB, Al-

Maadhidi J, Al-Aameri DA, Hadab MA. Efficacy of SARS-

CoV-2 vaccines on severity of coronavirus disease in

Iraq. Int Tinnitus J. 2024;28(1):68-72. [Google Scholar]

Published
2024-06-29