Flow Cytometric Expression of CD4 and CD8 in COVID-19 Vaccinated People in Baghdad City

  • Yasir W Issa Department of Anesthetic Techniques, Madenat Alelem University College, Baghdad, Iraq.
  • Shehlaa M Salih Department of Biotechnology, College of Biotechnology, Baghdad, Iraq.
  • Saad S Alani Department of Anesthetic Techniques, Madenat Alelem University College, Baghdad, Iraq.
Keywords: Lymphocytes, CD4/ CD8, Flowcytometry, COVID-19,

Abstract

Introduction: Epidemic of severe acute respiratory illness due to coronavirus (COVID-19). SARS-CoV-2 poses the greatest threat to civilisation, and an efficient vaccine plan and worldwide immunisation schedule have been introduced. This study examines the differences between vaccinated and unvaccinated individuals and the available applied COVID-19 vaccine in Baghdad, Iraq.
Method: A case-control study on 360 Iraqi volunteers involved 90 healthy controls, 90 receiving Pfizer, 90 AstraZeneca, and 90 receiving Sinopharm vaccines. The study sub-grouped cases based on follow-up after immunisation or infection status into 1 month, 2 months, and 3 months (30 each), assembling samples from vaccinated volunteers.
Results: A significantly elevated WBC count was recorded in the Sinopharm vaccinates (p < 0.05). Lymphocytes were highly activated in the Pfizer then Sinopharm vaccinates after one month, compared to controls. No significant differences were recorded in the monocytes among the vaccinated groups (p > 0.05). The granulocytes were significantly elevated in AstraZeneca vaccinates, followed by Pfizer vaccinates. Flow cytometric expression of CD4 and CD8 also showed significant increases in the vaccinated groups, there were higher CD4 and CD8 expression observed in the Pfizer, Sinopharm, and AstraZeneca vaccinates, respectively.
Conclusion: The evaluated criteria showed massive cellular immune stimulation in the Pfizer vaccinates, followed by Sinopharm, and lastly in AstraZeneca vaccinates, suggesting higher vaccine efficacy represented in Pfizer and Sinopharm vaccinates as compared to AstraZeneca vaccinates.

How to cite this article:
Issa Y W, Salih M S, Alani S S. Flow Cytometric
Expression of CD4 and CD8 in COVID-19
Vaccinated People in Baghdad City. J Commun
Dis. 2024;56(1):75-82.

DOI: https://doi.org/10.24321/0019.5138.202412

References

Karim SS, de Oliveira T. New SARS-CoV-2 variants — clinical, public health, and vaccine implications. N Engl J

Med. 2021;384(19):1866-8. [PubMed] [Google Scholar]

Zhang MX, Zhang TT, Shi GF, Cheng FM, Zheng YM, Tung TH, Chen HX. Safety of an inactivated SARS-CoV-2

vaccine among healthcare workers in China. Expert Rev Vaccines. 2021;20(7):891-8. [PubMed] [Google Scholar]

Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A

systematic review of SARS-CoV-2 vaccine candidates.

Signal Transduct Target Ther. 2020;5(1):237. [PubMed]

[Google Scholar]

Altmann DM, Reynolds CJ, Boyton RJ. SARS-CoV-2

variants: subversion of antibody response and

predicted impact on T cell recognition. Cell Rep Med.

;2(5):100286. [PubMed] [Google Scholar]

Zhou X, Jiang X, Qu M, Aninwene GE, Jucaud V, Moon JJ,

Gu Z, Sun W, Khademhosseini A. Engineering antiviral

vaccines. ACS Nano. 2020;14(10):12370-89. [PubMed]

[Google Scholar]

Roussel M, Ferrant J, Reizine F, Le Gallou S, Dulong J,

Carl S, Lesouhaitier M, Gregoire M, Bescher N, Verdy

C, Latour M, Bezier I, Cornic M, Vinit A, Monvoisin

C, Sawitzki B, Leonard S, Paul S, Feuillard J, Jeannet

R, Daix T, Tiwari VK, Tadie JM, Cogne M, Tarte K.

Comparative immune profiling of acute respiratory

distress syndrome patients with or without SARS-CoV-2

infection. Cell Rep Med. 2021;2(6):100291. [PubMed]

[Google Scholar]

Voysey M, Clemens SA, Madhi SA, Weckx LY, Folegatti

PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat

QE, Bibi S, Briner C, Cicconi P, Clutterbuck EA, Collins

AM, Cutland CL, Darton TC, Dheda K, Dold C, Duncan CJ,

Emary KR, Ewer KJ, Flaxman A, Fairlie L, Faust SN, Feng

S, Ferreira DM, Finn A, Galiza E, Goodman AL, Green

CM, Green CA, Greenland M, Hill C, Hill HC, Hirsch I,

Izu A, Jenkin D, Joe CC, Kerridge S, Koen A, Kwatra G,

Lazarus R, Libri V, Lillie PJ, Marchevsky NG, Marshall

RP, Mendes AV, Milan EP, Minassian AM, McGregor A,

Mujadidi YF, Nana A, Padayachee SD, Phillips DJ, Pittella

A, Plested E, Pollock KM, Ramasamy MN, Ritchie AJ,

Robinson H, Schwarzbold AV, Smith A, Song R, Snape

MD, Sprinz E, Sutherland RK, Thomson EC, Török ME,

Toshner M, Turner DP, Vekemans J, Villafana TL, White

T, Williams CJ, Douglas AD, Hill AV, Lambe T, Gilbert

SC, Pollard AJ; Oxford COVID Vaccine Trial Group.

Single-dose administration and the influence of the

timing of the booster dose on immunogenicity and

efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a

pooled analysis of four randomised trials. Lancet.

;397(10277):881-91. [PubMed] [Google Scholar]

Cruz AS, Mendes-Frias A, Oliveira AI, Dias L, Matos AR,

Carvalho A, Capela C, Pedrosa J, Castro AG, Silvestre

R. Interleukin-6 is a biomarker for the development of

fatal severe acute respiratory syndrome coronavirus

pneumonia. Front Immunol. 2021;12:613422.

[PubMed] [Google Scholar]

Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, Tan

W, Wu G, Xu M, Lou Z, Huang W, Xu W, Huang B,

Wang H, Wang W, Zhang W, Li N, Xie Z, Ding L, You

W, Zhao Y, Yang X, Liu Y, Wang Q, Huang L, Yang Y,

Xu G, Luo B, Wang W, Liu P, Guo W, Yang X. Safety

and immunogenicity of an inactivated SARS-CoV-2

vaccine, BBIBP-CorV: a randomised, double-blind,

placebo-controlled, phase 1/2 trial. Lancet Infect Dis.

;21(1):39-51. [PubMed] [Google Scholar]

Apostolidis SA, Kakara M, Painter MM, Goel RR,

Mathew D, Lenzi K, Rezk A, Patterson KR, Espinoza

DA, Kadri JC, Markowitz DM, Markowitz CE, Mexhitaj I,

Jacobs D, Babb A, Betts MR, Prak ET, Weiskopf D, Grifoni

A, Lundgreen KA, Gouma S, Sette A, Bates P, Hensley

SE, Greenplate AR, Wherry EJ, Li R, Bar-Or A. Cellular

and humoral immune responses following SARS-CoV-2

mRNA vaccination in patients with multiple sclerosis on

anti-CD20 therapy. Nat Med. 2021;27(11):1990-2001.

[PubMed] [Google Scholar]

Monschein T, Hartung HP, Zrzavy T, Barnett M,

Boxberger N, Berger T, Chataway J, Bar-Or A, Rommer

PS, Zettl UK. Vaccination and multiple sclerosis in the

era of the COVID-19 pandemic. J Neurol Neurosurg

Psychiatry. 2021;92(10):1033-43. [PubMed] [Google

Scholar]

Fathi N, Rezaei N. Lymphopenia in COVID-19: therapeutic

opportunities. Cell Biol Int. 2020;44(9):1792-7.

[PubMed] [Google Scholar]

Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ,

Wang Q, Miao H. Lymphopenia predicts disease

severity of COVID-19: a descriptive and predictive

study. Signal Transduct Target Ther. 2020;5(1):33.

[PubMed] [Google Scholar]

Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y,

Tian Z. Functional exhaustion of antiviral lymphocytes in

COVID-19 patients. Cell Mol Immunol. 2020;17(5):533-

[PubMed] [Google Scholar]

Cohen D, Krauthammer SH, Wolf I, Even-Sapir

E. Hypermetabolic lymphadenopathy following

administration of BNT162b2 mRNA Covid-19 vaccine:

incidence assessed by [18F] FDG PET-CT and relevance

to study interpretation. Eur J Nucl Med Mol Imaging.

;48(6):1854-63. [PubMed] [Google Scholar]

Cho A, Muecksch F, Schaefer-Babajew D, Wang Z,

Finkin S, Gaebler C, Ramos V, Cipolla M, Mendoza P,

Agudelo M, Bednarski E, DaSilva J, Shimeliovich I, Dizon

J, Daga M, Millard KG, Turroja M, Schmidt F, Zhang

F, Tanfous TB, Jankovic M, Oliveria TY, Gazumyan A,

Caskey M, Bieniasz PD, Hatziioannou T, Nussenzweig

MC. Anti-SARS-CoV-2 receptor-binding domain

antibody evolution after mRNA vaccination. Nature.

;600(7889):517-22. [PubMed] [Google Scholar]

Mascellino MT, Di Timoteo F, De Angelis M, Oliva

A. Overview of the main anti-SARS-CoV-2 vaccines:

mechanism of action, efficacy and safety. Infect DrugResist. 2021;14:3459-76. [PubMed] [Google Scholar]

Tsuji M, Akkina R. Editorial: development of humanized

mouse models for infectious diseases and cancer. Front

Immunol. 2020; 10:3051. [PubMed] [Google Scholar]

Thanh Le T, Andreadakis Z, Kumar A, Román RG,

Tollefsen S, Saville M, Mayhew S. The COVID-19

vaccine development landscape. Nat Rev Drug Discov.

;19(5):305-6. [PubMed] [Google Scholar]

He Z, Ren L, Yang J, Guo L, Feng L, Ma C, Wang X, Leng

Z, Tong X, Zhou W, Wang G, Zhang T, Guo Y, Wu C,

Wang Q, Liu M, Wang C, Jia M, Hu X, Wang Y, Zhang

X, Hu R, Zhong J, Yang J, Dai J, Chen L, Zhou X, Wang J,

Yang W, Wang C. Seroprevalence and humoral immune

durability of anti-SARS-CoV-2 antibodies in Wuhan,

China: a longitudinal, population-level, cross-sectional

study. Lancet. 2021;397(10279):1075-84. [PubMed]

[Google Scholar]

McNeil MM, DeStefano F. Vaccine-associated

hypersensitivity. J Allergy Clin Immunol.

;141(2):463-72. [PubMed] [Google Scholar]

Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes

and macrophages in COVID-19. Front Immunol. 2021;

:720109. [PubMed] [Google Scholar]

Yang D, Chu H, Hou Y, Chai Y, Shuai H, Lee AC, Zhang

X, Wang Y, Hu B, Huang X, Yuen TT, Cai JP, Zhou J,

Yuan S, Zhang AJ, Chang JF, Yuen KY. Attenuated

interferon and proinflammatory response in SARS-

CoV-2-infected human dendritic cells is associated with

viral antagonism of STAT1 phosphorylation. J Infect

Dis. 2020;222(5):734-45. [PubMed] [Google Scholar]

COVID-19 vaccines. In: Drugs and Lactation Database

(LactMed) [Internet]. Bethesda (MD): National Institute

of Child Health and Human Development; 2006 [cited

Dec 5]. Available from: https://pubmed.ncbi.nlm.

nih.gov/33355732/ [PubMed]

Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC.

COVID-19 vaccines: comparison of biological,

pharmacological characteristics and adverse effects

of Pfizer/BioNTech and Moderna vaccines. Eur Rev

Med Pharmacol Sci. 2021;25(3):1663-9. [PubMed]

[Google Scholar]

Hagin D, Freund T, Navon M, Halperin T, Adir D, Marom

R, Levi I, Benor S, Alcalay Y, Freund NT. Immunogenicity

of Pfizer-BioNTech COVID-19 vaccine in patients with

inborn errors of immunity. J Allergy Clin Immunol.

;148(3):739-49. [PubMed] [Google Scholar]

Li C, Lee A, Grigoryan L, Arunachalam PS, Scott MK,

Trisal M, Wimmers F, Sanyal M, Weidenbacher PA,

Feng Y, Adamska JZ, Valore E, Wang Y, Verma R, Reis

N, Dunham D, O’Hara R, Park H, Luo W, Gitlin AD, Kim

P, Khatri P, Nadeau KC, Pulendran B. Mechanisms of

innate and adaptive immunity to the Pfizer-BioNTech

BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–55.

[PubMed] [Google Scholar]

Liu G, Zhao Y. Toll-like receptors and immune regulation:

their direct and indirect modulation on regulatory

CD4+ CD25+ T cells. Immunology. 2007;122(2):149-56.

[PubMed] [Google Scholar]

Melgoza-González EA, Hinojosa-Trujillo D, Reséndiz-

Sandoval M, Mata-Haro V, Hernández-Valenzuela

S, García-Vega M, Bravo-Parra M, Arvizu-Flores AA,

Valenzuela O, Velazquez E, Soto-Gaxiola A, Gomez-

Meza MB, Perez-Jacobo F, Villela L, Hernandez J.

Published
2024-03-30