Flow Cytometric Expression of CD4 and CD8 in COVID-19 Vaccinated People in Baghdad City
Abstract
Introduction: Epidemic of severe acute respiratory illness due to coronavirus (COVID-19). SARS-CoV-2 poses the greatest threat to civilisation, and an efficient vaccine plan and worldwide immunisation schedule have been introduced. This study examines the differences between vaccinated and unvaccinated individuals and the available applied COVID-19 vaccine in Baghdad, Iraq.
Method: A case-control study on 360 Iraqi volunteers involved 90 healthy controls, 90 receiving Pfizer, 90 AstraZeneca, and 90 receiving Sinopharm vaccines. The study sub-grouped cases based on follow-up after immunisation or infection status into 1 month, 2 months, and 3 months (30 each), assembling samples from vaccinated volunteers.
Results: A significantly elevated WBC count was recorded in the Sinopharm vaccinates (p < 0.05). Lymphocytes were highly activated in the Pfizer then Sinopharm vaccinates after one month, compared to controls. No significant differences were recorded in the monocytes among the vaccinated groups (p > 0.05). The granulocytes were significantly elevated in AstraZeneca vaccinates, followed by Pfizer vaccinates. Flow cytometric expression of CD4 and CD8 also showed significant increases in the vaccinated groups, there were higher CD4 and CD8 expression observed in the Pfizer, Sinopharm, and AstraZeneca vaccinates, respectively.
Conclusion: The evaluated criteria showed massive cellular immune stimulation in the Pfizer vaccinates, followed by Sinopharm, and lastly in AstraZeneca vaccinates, suggesting higher vaccine efficacy represented in Pfizer and Sinopharm vaccinates as compared to AstraZeneca vaccinates.
How to cite this article:
Issa Y W, Salih M S, Alani S S. Flow Cytometric
Expression of CD4 and CD8 in COVID-19
Vaccinated People in Baghdad City. J Commun
Dis. 2024;56(1):75-82.
DOI: https://doi.org/10.24321/0019.5138.202412
References
Karim SS, de Oliveira T. New SARS-CoV-2 variants — clinical, public health, and vaccine implications. N Engl J
Med. 2021;384(19):1866-8. [PubMed] [Google Scholar]
Zhang MX, Zhang TT, Shi GF, Cheng FM, Zheng YM, Tung TH, Chen HX. Safety of an inactivated SARS-CoV-2
vaccine among healthcare workers in China. Expert Rev Vaccines. 2021;20(7):891-8. [PubMed] [Google Scholar]
Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A
systematic review of SARS-CoV-2 vaccine candidates.
Signal Transduct Target Ther. 2020;5(1):237. [PubMed]
[Google Scholar]
Altmann DM, Reynolds CJ, Boyton RJ. SARS-CoV-2
variants: subversion of antibody response and
predicted impact on T cell recognition. Cell Rep Med.
;2(5):100286. [PubMed] [Google Scholar]
Zhou X, Jiang X, Qu M, Aninwene GE, Jucaud V, Moon JJ,
Gu Z, Sun W, Khademhosseini A. Engineering antiviral
vaccines. ACS Nano. 2020;14(10):12370-89. [PubMed]
[Google Scholar]
Roussel M, Ferrant J, Reizine F, Le Gallou S, Dulong J,
Carl S, Lesouhaitier M, Gregoire M, Bescher N, Verdy
C, Latour M, Bezier I, Cornic M, Vinit A, Monvoisin
C, Sawitzki B, Leonard S, Paul S, Feuillard J, Jeannet
R, Daix T, Tiwari VK, Tadie JM, Cogne M, Tarte K.
Comparative immune profiling of acute respiratory
distress syndrome patients with or without SARS-CoV-2
infection. Cell Rep Med. 2021;2(6):100291. [PubMed]
[Google Scholar]
Voysey M, Clemens SA, Madhi SA, Weckx LY, Folegatti
PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat
QE, Bibi S, Briner C, Cicconi P, Clutterbuck EA, Collins
AM, Cutland CL, Darton TC, Dheda K, Dold C, Duncan CJ,
Emary KR, Ewer KJ, Flaxman A, Fairlie L, Faust SN, Feng
S, Ferreira DM, Finn A, Galiza E, Goodman AL, Green
CM, Green CA, Greenland M, Hill C, Hill HC, Hirsch I,
Izu A, Jenkin D, Joe CC, Kerridge S, Koen A, Kwatra G,
Lazarus R, Libri V, Lillie PJ, Marchevsky NG, Marshall
RP, Mendes AV, Milan EP, Minassian AM, McGregor A,
Mujadidi YF, Nana A, Padayachee SD, Phillips DJ, Pittella
A, Plested E, Pollock KM, Ramasamy MN, Ritchie AJ,
Robinson H, Schwarzbold AV, Smith A, Song R, Snape
MD, Sprinz E, Sutherland RK, Thomson EC, Török ME,
Toshner M, Turner DP, Vekemans J, Villafana TL, White
T, Williams CJ, Douglas AD, Hill AV, Lambe T, Gilbert
SC, Pollard AJ; Oxford COVID Vaccine Trial Group.
Single-dose administration and the influence of the
timing of the booster dose on immunogenicity and
efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a
pooled analysis of four randomised trials. Lancet.
;397(10277):881-91. [PubMed] [Google Scholar]
Cruz AS, Mendes-Frias A, Oliveira AI, Dias L, Matos AR,
Carvalho A, Capela C, Pedrosa J, Castro AG, Silvestre
R. Interleukin-6 is a biomarker for the development of
fatal severe acute respiratory syndrome coronavirus
pneumonia. Front Immunol. 2021;12:613422.
[PubMed] [Google Scholar]
Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, Tan
W, Wu G, Xu M, Lou Z, Huang W, Xu W, Huang B,
Wang H, Wang W, Zhang W, Li N, Xie Z, Ding L, You
W, Zhao Y, Yang X, Liu Y, Wang Q, Huang L, Yang Y,
Xu G, Luo B, Wang W, Liu P, Guo W, Yang X. Safety
and immunogenicity of an inactivated SARS-CoV-2
vaccine, BBIBP-CorV: a randomised, double-blind,
placebo-controlled, phase 1/2 trial. Lancet Infect Dis.
;21(1):39-51. [PubMed] [Google Scholar]
Apostolidis SA, Kakara M, Painter MM, Goel RR,
Mathew D, Lenzi K, Rezk A, Patterson KR, Espinoza
DA, Kadri JC, Markowitz DM, Markowitz CE, Mexhitaj I,
Jacobs D, Babb A, Betts MR, Prak ET, Weiskopf D, Grifoni
A, Lundgreen KA, Gouma S, Sette A, Bates P, Hensley
SE, Greenplate AR, Wherry EJ, Li R, Bar-Or A. Cellular
and humoral immune responses following SARS-CoV-2
mRNA vaccination in patients with multiple sclerosis on
anti-CD20 therapy. Nat Med. 2021;27(11):1990-2001.
[PubMed] [Google Scholar]
Monschein T, Hartung HP, Zrzavy T, Barnett M,
Boxberger N, Berger T, Chataway J, Bar-Or A, Rommer
PS, Zettl UK. Vaccination and multiple sclerosis in the
era of the COVID-19 pandemic. J Neurol Neurosurg
Psychiatry. 2021;92(10):1033-43. [PubMed] [Google
Scholar]
Fathi N, Rezaei N. Lymphopenia in COVID-19: therapeutic
opportunities. Cell Biol Int. 2020;44(9):1792-7.
[PubMed] [Google Scholar]
Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ,
Wang Q, Miao H. Lymphopenia predicts disease
severity of COVID-19: a descriptive and predictive
study. Signal Transduct Target Ther. 2020;5(1):33.
[PubMed] [Google Scholar]
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y,
Tian Z. Functional exhaustion of antiviral lymphocytes in
COVID-19 patients. Cell Mol Immunol. 2020;17(5):533-
[PubMed] [Google Scholar]
Cohen D, Krauthammer SH, Wolf I, Even-Sapir
E. Hypermetabolic lymphadenopathy following
administration of BNT162b2 mRNA Covid-19 vaccine:
incidence assessed by [18F] FDG PET-CT and relevance
to study interpretation. Eur J Nucl Med Mol Imaging.
;48(6):1854-63. [PubMed] [Google Scholar]
Cho A, Muecksch F, Schaefer-Babajew D, Wang Z,
Finkin S, Gaebler C, Ramos V, Cipolla M, Mendoza P,
Agudelo M, Bednarski E, DaSilva J, Shimeliovich I, Dizon
J, Daga M, Millard KG, Turroja M, Schmidt F, Zhang
F, Tanfous TB, Jankovic M, Oliveria TY, Gazumyan A,
Caskey M, Bieniasz PD, Hatziioannou T, Nussenzweig
MC. Anti-SARS-CoV-2 receptor-binding domain
antibody evolution after mRNA vaccination. Nature.
;600(7889):517-22. [PubMed] [Google Scholar]
Mascellino MT, Di Timoteo F, De Angelis M, Oliva
A. Overview of the main anti-SARS-CoV-2 vaccines:
mechanism of action, efficacy and safety. Infect DrugResist. 2021;14:3459-76. [PubMed] [Google Scholar]
Tsuji M, Akkina R. Editorial: development of humanized
mouse models for infectious diseases and cancer. Front
Immunol. 2020; 10:3051. [PubMed] [Google Scholar]
Thanh Le T, Andreadakis Z, Kumar A, Román RG,
Tollefsen S, Saville M, Mayhew S. The COVID-19
vaccine development landscape. Nat Rev Drug Discov.
;19(5):305-6. [PubMed] [Google Scholar]
He Z, Ren L, Yang J, Guo L, Feng L, Ma C, Wang X, Leng
Z, Tong X, Zhou W, Wang G, Zhang T, Guo Y, Wu C,
Wang Q, Liu M, Wang C, Jia M, Hu X, Wang Y, Zhang
X, Hu R, Zhong J, Yang J, Dai J, Chen L, Zhou X, Wang J,
Yang W, Wang C. Seroprevalence and humoral immune
durability of anti-SARS-CoV-2 antibodies in Wuhan,
China: a longitudinal, population-level, cross-sectional
study. Lancet. 2021;397(10279):1075-84. [PubMed]
[Google Scholar]
McNeil MM, DeStefano F. Vaccine-associated
hypersensitivity. J Allergy Clin Immunol.
;141(2):463-72. [PubMed] [Google Scholar]
Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes
and macrophages in COVID-19. Front Immunol. 2021;
:720109. [PubMed] [Google Scholar]
Yang D, Chu H, Hou Y, Chai Y, Shuai H, Lee AC, Zhang
X, Wang Y, Hu B, Huang X, Yuen TT, Cai JP, Zhou J,
Yuan S, Zhang AJ, Chang JF, Yuen KY. Attenuated
interferon and proinflammatory response in SARS-
CoV-2-infected human dendritic cells is associated with
viral antagonism of STAT1 phosphorylation. J Infect
Dis. 2020;222(5):734-45. [PubMed] [Google Scholar]
COVID-19 vaccines. In: Drugs and Lactation Database
(LactMed) [Internet]. Bethesda (MD): National Institute
of Child Health and Human Development; 2006 [cited
Dec 5]. Available from: https://pubmed.ncbi.nlm.
nih.gov/33355732/ [PubMed]
Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC.
COVID-19 vaccines: comparison of biological,
pharmacological characteristics and adverse effects
of Pfizer/BioNTech and Moderna vaccines. Eur Rev
Med Pharmacol Sci. 2021;25(3):1663-9. [PubMed]
[Google Scholar]
Hagin D, Freund T, Navon M, Halperin T, Adir D, Marom
R, Levi I, Benor S, Alcalay Y, Freund NT. Immunogenicity
of Pfizer-BioNTech COVID-19 vaccine in patients with
inborn errors of immunity. J Allergy Clin Immunol.
;148(3):739-49. [PubMed] [Google Scholar]
Li C, Lee A, Grigoryan L, Arunachalam PS, Scott MK,
Trisal M, Wimmers F, Sanyal M, Weidenbacher PA,
Feng Y, Adamska JZ, Valore E, Wang Y, Verma R, Reis
N, Dunham D, O’Hara R, Park H, Luo W, Gitlin AD, Kim
P, Khatri P, Nadeau KC, Pulendran B. Mechanisms of
innate and adaptive immunity to the Pfizer-BioNTech
BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–55.
[PubMed] [Google Scholar]
Liu G, Zhao Y. Toll-like receptors and immune regulation:
their direct and indirect modulation on regulatory
CD4+ CD25+ T cells. Immunology. 2007;122(2):149-56.
[PubMed] [Google Scholar]
Melgoza-González EA, Hinojosa-Trujillo D, Reséndiz-
Sandoval M, Mata-Haro V, Hernández-Valenzuela
S, García-Vega M, Bravo-Parra M, Arvizu-Flores AA,
Valenzuela O, Velazquez E, Soto-Gaxiola A, Gomez-
Meza MB, Perez-Jacobo F, Villela L, Hernandez J.
Copyright (c) 2024 Journal of Communicable Diseases (E-ISSN: 2581-351X & P-ISSN: 0019-5138)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.