Designing a Vaccine Platform composed of Phage encapsulated with Chitosan Nanoparticles Targeting Pathogenic Viruses
Abstract
Introduction: The current study is aimed at investigating the feasibility of designing a novel platform using chitosan-coated bacteriophage for vaccination against pathogenic viral agents. The SARS-CoV-2 spike protein was used as a model in this study. The novel coronavirus SARSCoV-2 is responsible for the COVID-19 disease and relies on ACE2 as its obligate receptor to enter cells. The receptor-binding domain (RBD) of the virus is an important epitope for neutralising activity and is efficiently produced. To improve immunisation, E. coli phage particles are being used as vaccine delivery vehicles, and chitosan (CS) is a promising candidate for use as an adjuvant/ carrier in vaccine delivery.
Methods: The process included the preparation of antigens, isolation of bacteriophage, encapsulation with chitosan (CS-NPs) to form CSNPs loaded with phage (phage-CS-NPs), loading with RBD protein, characterisation of phage by TEM, while that of chitosan (CS-NP) and encapsulation of phage-CS-NP by FTIR spectra, followed by measurement of released RBD protein by HPLC technique, vaccination of rabbit, and then detection of antibody by competitive ELIZA.
Results: Nanoparticle adjuvant of phage encapsulated with chitosan and loaded with RBD antigen has shown to induce good titre of antiRBD IgG antibodies after being injected in rabbits for three doses and 2 weeks intervals in between, similar to the effect of alum, but with less toxicity than alum.
Conclusion: It has been shown that using nanoparticles complex adjuvant with alum adjuvant was more effective in boosting humoral immunity than if they were used separately.
How to cite this article:
Shukur FMM, Abdulamir AS, Taha AA. Designing a Vaccine Platform composed of Phage encapsulated with Chitosan Nanoparticles Targeting Pathogenic Viruses. J Commun Dis. 2023;55(2):9-17
DOI: https://doi.org/10.24321/0019.5138.202319
References
Rokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak
in Iran: comparison with SARS and MERS. Rev Med Virol. 2020;30(3):e2107. [PubMed] [Google Scholar]
Tse GM, To KF, Chan PK, Lo AW, Ng KC, Wu A, Lee N, Wong HC, Mak SM, Chan KF, Hui DS, Sung JJ, Ng
HK. Pulmonary pathological features in coronavirus-associated severe acute respiratory syndrome (SARS).
J Clin Pathol. 2004;57(3):260-5. [PubMed] [Google Scholar]
Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, Sheng J, Quan L, Xia Z, Tan W,
Cheng G, Jiang T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in
China. Cell Host Microbe. 2020;27(3):325-8. [PubMed] [Google Scholar]
Bouayad A. Innate immune evasion by SARS CoV 2: comparison with SARS CoV. Rev Med Virol.
;30(6):1-9. [PubMed] [Google Scholar]
Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, Zhang B, Shi Y, Yan J, Gao GF.
Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature.
;500(7461):227-31. [PubMed] [Google Scholar]
Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and
vaccine. Cell Mol Immunol. 2020;17(6):613-20. [PubMed] [Google Scholar]
Shirbhate E, Pandey J, Patel VK, Kamal M, Jawaid T, Gorain B, Kesharwani P, Rajak H. Understanding the role
of ACE-2 receptor in pathogenesis of COVID-19 disease: a potential approach for therapeutic intervention.
Pharmacol Rep. 2021 Dec;73(6):1539-50. [PubMed] [Google Scholar]
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S,
Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in
Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. [PubMed] [Google Scholar]
Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: a review. J
Infect Public Health. 2020;13(11):1619-29. [PubMed] [Google Scholar]
Ahire ED, Kshirsagar SJ. Immune responses induced by different vaccine platforms against coronavirus
disease-19. Explor Immunol. 2021;1:243-57. [Google Scholar]
Kang YF, Sun C, Zhuang Z, Yuan RY, Zheng Q, Li JP, Zhou PP, Chen XC, Liu Z, Zhang X, Yu XH, Kong XW,
Zhu QY, Zhong Q, Xu M, Zhong NS, Zeng YX, Feng GK, Changwen K, Zhao JC, Zeng MS. Rapid development
of SARS-CoV-2 spike protein receptor-binding domain self-assembled nanoparticle vaccine candidates. ACS
Nano. 2021;15(2):2738-52. [PubMed] [Google Scholar]
Bao Q, Li X, Han G, Zhu Y, Mao C, Yang M. Phage based vaccines. Adv Drug Deliv Rev. 2019;145:40-56.
[PubMed] [Google Scholar]
Akbari-Alavijeh S, Shaddel R, Jafari SM. Encapsulation of food bioactives and nutraceuticals by various chitosan based nanocarriers. Food Hydrocoll. 2020;105:105774. [Google Scholar]
Danielsson R, Eriksson H. Aluminium adjuvants in vaccines a way to modulate the immune response.
Semin Cell Dev Biol. 2021;115:3-9. [PubMed] [Google Scholar]
Hyman P. Phages for phage therapy: isolation, characterization, and host range breadth.
Pharmaceuticals (Basel). 2019;12(1):35. [PubMed] [Google Scholar]
Lameiro MH, Malpique R, Silva AC, Alves PM, Melo E. Encapsulation of adenoviral vectors into chitosan
bile salt microparticles for mucosal vaccination. J Biotechnol. 2006;126(2):152-62. [PubMed] [Google Scholar]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. [PubMed] [Google Scholar]
Rahimzadeh G, Saeedi M, Moosazadeh M, Hashemi SM, Babaei A, Rezai MS, Kamel K, Asare-Addo K,
Nokhodchi A. Encapsulation of bacteriophage cocktail into chitosan for the treatment of bacterial diarrhea.
Sci Rep. 2021;11(1):15603. [PubMed] [Google Scholar]
Shrivastava T, Singh B, Rizvi ZA, Verma R, Goswami S, Vishwakarma P, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Awasthi A, Surjit M. Comparative immunomodulatory evaluation of the receptor binding domain of the SARS CoV-2 spike protein; a potential vaccine candidate which imparts potent humoral and Th1 type immune response in a mouse model. Front Immunol. 2021;12:641447. [PubMed] [Google Scholar]
Ackermann HW. Tailed bacteriophages: the order Caudovirales. Adv Virus Res. 1998;51:135-201.
[PubMed] [Google Scholar]
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo
H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang
YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature.
;579(7798):270-3. [PubMed] [Google Scholar]
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure
of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. [PubMed] [Google
Scholar]
Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, Bao L, Mo F, Li X, Huang Y, Hong W, Yang Y, Zhao Y, Ye F, Lin S, Deng W, Chen H, Lei H, Zhang Z, Luo M, Gao H, Zheng Y, Gong Y, Jiang X, Xu Y, Lv Q, Li D, Wang M, Li F, Wang S, Wang G, Yu P, Qu Y, Yang L, Deng H, Tong A, Li J, Wang Z, Yang J, Shen G, Zhao Z, Li Y, Luo J, Liu H, Yu W, Yang M, Xu J, Wang J, Li H, Wang H, Kuang D, Lin P, Hu Z, Guo W, Cheng W, He Y, Song X, Chen C, Xue Z, Yao S, Chen L,
Ma X, Chen S, Gou M, Huang W, Wang Y, Fan C, Tian Z, Shi M, Wang FS, Dai L, Wu M, Li G, Wang G, Peng Y,
Qian Z, Huang C, Lau JY, Yang Z, Wei Y, Cen X, Peng X, Qin C, Zhang K, Lu G, Wei X. A vaccine targeting the
RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020;586(7830):572-7. [PubMed]
[Google Scholar]
Taj MK, Samreen Z, Ling JX, Taj I, Hassani TM, Yunlin W. Escherichia coli as a model organism. Int J Eng Res
Sci Technol. 2014;3(2):1-8. [Google Scholar]
Pallavali RR, Degati VL, Lomada D, Reddy MC, Durbaka VR. Isolation and in vitro evaluation of bacteriophages
against MDR bacterial isolates from septic wound infections. PloS One. 2017;12(7):e0179245. [PubMed]
[Google Scholar]
Samir S, El-Far A, Okasha H, Mahdy R, Samir F, Nasr S. Isolation and characterization of lytic bacteriophages
from sewage at an Egyptian tertiary care hospital against methicillin resistant Staphylococcus aureus
clinical isolates. Saudi J Biol Sci. 2022;29(5):3097-106. [PubMed] [Google Scholar]
Yadav N, Mudgal D, Anand R, Jindal S, Mishra V. Recent development in nanoencapsulation and delivery of
natural bioactives through chitosan scaffolds for various biological applications. Int J Biol Macromol.
;220:537-72. [PubMed] [Google Scholar]
Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, Rapposelli S, Akram M, Iqbal M, Krishna
A, Kumar NV, Braga SS, Cardoso SM, Jafernik K, Ekiert H, Cruz-Martins N, Szopa A, Villagran M, Mardones L,
Martorell M, Docea AO, Calina D. Chitosan nanoparticles as a promising tool in nanomedicine with particular
emphasis on oncological treatment. Cancer Cell Int. 2021;21(1):318. [PubMed] [Google Scholar]
Murugesan S, Scheibel T. Chitosan-based nanocomposites for medical applications. J Polym
Sci. 2021;59(15):1610-42. [Google Scholar]
Lin X, Han P, Dong S, Li H. Preparation and application of bacteriophage-loaded chitosan microspheres for
controlling Lactobacillus plantarum contamination in bioethanol fermentation. RSC Adv. 2015;5(85):69886-
[Google Scholar]
Lei H, Alu A, Yang J, He C, Hong W, Cheng Z, Yang L, Li J, Wang Z, Wang W, Lu G, Wei X. Cationic nanocarriers
as potent adjuvants for recombinant S-RBD vaccine of SARS CoV 2. Signal Transduct Target Ther. 2020;5(1):291.
[PubMed] [Google Scholar]
Nguyen TT, Lee JS, Shim H. Construction of rabbit immune antibody libraries. In: Hust M, Lim T, editors.
Phage display: methods and protocols. Vol. 1701. New York: Humana Press; 2018. p. 133-46. [PubMed]
[Google Scholar]
Huang WC, Zhou S, He X, Chiem K, Mabrouk MT, Nissly RH, Bird IM, Strauss M, Sambhara S, Ortega J, Wohlfert
EA, Martinez Sobrido L, Kuchipudi SV, Davidson BA, Lovell JF. SARS-CoV-2 RBD neutralizing antibody
induction is enhanced by particulate vaccination. Adv Mater. 2020;32(50):2005637. [PubMed] [Google
Scholar]
Nanishi E, Borriello F, O’Meara TR, McGrath ME, Saito Y, Haupt RE, Seo HS, van Haren SD, Cavazzoni CB, Brook
B, Barman S, Chen J, Diray-Arce J, Doss Gollin S, De Leon M, Prevost Reilly A, Chew K, Menon M, Song K,
Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Sherman AC, Baden LR, Ernst RK, Dillen C, Weston
SM, Johnson RM, Hammond HL, Mayer R, Burke A, Bottazzi ME, Hotez PJ, Strych U, Chang A, Yu J, Sage
PT, Barouch DH, Dhe Paganon S, Zanoni I, Ozonoff A, Frieman MB, Levy O, Dowling DJ. An aluminum
hydroxide: CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in
aged mice. Sci Transl Med. 2021;14(629):eabj5305. [PubMed] [Google Scholar]
Meena J, Singhvi P, Srichandan S, Dandotiya J, Verma J, Singh M, Ahuja R, Panwar N, Wani TQ, Khatri R,
Siddiqui G, Gupta A, Samal S, Panda AK. RBD decorated PLA nanoparticle admixture with aluminum hydroxide
elicit robust and long-lasting immune response against SARS CoV 2. Eur J Pharm Biopharm. 2022;176:43-53.
[PubMed] [Google Scholar]
Copyright (c) 2023 Author's
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.