Phylogenetic Groups and Antibiotic Resistance Characteristics of Uropathogenic Escherichia coli

  • Suhad Hassan Nasif Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
  • Munim Radwan Ali Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
  • Ali Haider Alsakini Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
Keywords: Escherichia coli, Urinary Tract Infections, Extensively-Drug Resistant, Phylogenetic Group

Abstract

Background: Different phylogenetic groups of uropathogenic Escherichia coli are associated with increased virulence and multidrug resistance, highlighting the importance of understanding the genetic characteristics of these isolates for effective treatment and prevention of UTIs. Genomic analysis was conducted on 100 Escherichia coli isolates obtained from multiple hospitals in Baghdad, Iraq, which showed extensive resistance to multiple drugs, including both multi-drug resistant (MDR) and extensively-drug resistant (XDR) isolates.

Methodology: Antibiotic susceptibility was evaluated using the disc diffusion technique. PCR was used to test for the presence of phylogenetic groupings and to characterise antibiotic resistance genes.

Results: Phylogroup F (36.66%) and Phylogroup C (23.33%) were the most common. Isolates of UPEC were found in every phylogroup, except for the six that were untypable. The study identified 54 out of 70 typed Escherichia coli isolates that belonged to phylogroups F (33/70) and C (21/70) as multidrug-resistant, with a high percentage (70.76%) of these isolates demonstrating extensive drug resistance (XDR). Based on the presence of particular genes or DNA, E. coli populations are classified into eight basic phylogenetic groups: A, B1, B2, C, D, E, F (belonging to E. coli sensu stricto), and clade I (belonging to Escherichia clade).

Conclusion: Based on our findings, certain types of E. coli belonging to the phylogenetic group F are more common, more dangerous, and more resistant to antibiotics than others when it comes to UTIs.

How to cite this article:
Nasif SH, Ali MR, Alsakini AH. Phylogenetic Groups and Antibiotic Resistance Characteristics of Uropathogenic Escherichia coli. J Commun Dis. 2023;55(1):36-44.

DOI: https://doi.org/10.24321/0019.5138.202306

References

Tullus K, Shaikh N. Urinary tract infections in children. Lancet. 2020 May 23;395(10237):1659-68. [PubMed]

[Google Scholar]

Whittam TS, Ochman H, Selander RK. Geographic components of linkage disequilibrium in natural

populations of Escherichia coli. Mol Biol Evol. 1983 Dec 1;1(1):67-83. [PubMed] [Google Scholar]

Dormanesh B, Dehkordi FS, Hosseini S, Momtaz H, Mirnejad R, Hoseini MJ, Yahaghi E, Tarhriz V, Darian

EK. Virulence factors and o-serogroups profiles of uropathogenic Escherichia coli isolated from

Iranian pediatric patients. Iran Red Crescent Med J. 2014;16(2):e14627. [PubMed] [Google Scholar]

Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method

revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep. 2013;5:58-

[PubMed] [Google Scholar]

Coronell-Rodríguez W, Arteta-Acosta C, Dueñas-Castell C. Interpretive reading of the antibiogram: a tool for

clinical practice. In: Ortiz-Ruiz G, Dueñas-Castell C, editors. Sepsis. New York: Springer; 2018. p. 95-115.

[Google Scholar]

Gibreel TM, Dodgson AR, Cheesbrough J, Fox AJ, Bolton FJ, Upton M. Population structure, virulence

potential and antibiotic susceptibility of uropathogenic Escherichia coli from Northwest England. J Antimicrob

Chemother. 2012;67:346-56. [PubMed] [Google Scholar]

Momtaz H, Karimian A, Madani M, Dehkordi FS, Ranjbar R, Sarshar M, Souod N. Uropathogenic Escherichia coli

in Iran: serogroup distributions, virulence factors, and antimicrobial resistance properties. Ann Clin Microbiol

Antimicrob. 2013;12:8. [PubMed] [Google Scholar]

Alyamani EJ, Khiyami AM, Booq RY, Majrashi MA, Bahwerth FS, Rechkina E. The occurrence of ESBLproducing

Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi

Arabia. Ann Clin Microbiol Antimicrob. 2017;16:1. [PubMed] [Google Scholar]

Atlas RM, Brown AE, Parks LC. Laboratory manual of experimental microbiology. Mosby-year, Inc; 1995.

Clinical and Laboratory Standard Institute, M100-S. Performance Standards for Antimicrobial Susceptibility

Testing. 29th ed. Clinical and Laboratory Standards Institute, Wayne, PA, USA. 2022.

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter

G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL.

Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert

proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012 Mar 1;18(3):268-

[PubMed] [Google Scholar]

Tewawong N, Kowaboot S, Pimainog Y, Watanagul N,Thongmee T, Poovorawan Y. Distribution of phylogenetic

groups, adhesin genes, biofilm formation, and antimicrobial resistance of uropathogenic Escherichia

coli isolated from hospitalized patients in Thailand. PeerJ. 2020;8:e10453. [PubMed] [Google Scholar]

Mohsin AS, Alsakini AH, Ali MR. Outbreak of drug resistant Escherichia coli phylogenetic F group

associated urinary tract infection. Iran J Microbiol. 2022;14(3):341-50. [Google Scholar]

Fiore DC, Fox CL. Urology and nephrology update: recurrent urinary tract infection. FP Essent. 2014

Jan;416:30-7. [PubMed] [Google Scholar]

Nuutinen M, Uhari M. Recurrence and follow-up after urinary tract infection under the age of 1 year. Pediatr

Nephrol. 2001 Jan;16:69-72. [PubMed] [Google Scholar]

Silverman JA, Schreiber HL, Hooton TM, Hultgren SJ. From physiology to pharmacy: developments in

the pathogenesis and treatment of recurrent urinary tract infections. Curr Urol Rep. 2013 Oct;14(5):448-56.

[PubMed] [Google Scholar]

Milart P, Woźniakowska E, Woźniak S, Palacz T, Czuczwar P, Wrona W, Szkodziak P, Paszkowski M, Paszkowski

T. Urinary tract infections in the menopausal period: optimal management. Menopause Rev. 2013 Feb

;12(1):23-8. [Google Scholar]

Arnold JJ, Hehn LE, Klein DA. Common questions about recurrent urinary tract infections in women. Am Fam

Physician. 2016 Apr 1;93(7):560-9. [PubMed] [Google Scholar]

Mohsin AS, Alsakini AH, Ali MR. Molecular characterization of Dr/Afa genes prevalent among multi

drug resistant Escherichia coli isolated from urinary tract infections. Biomedicine. 2022 Jul 3;42(3):523-9.

[Google Scholar]

Ali MR, Al-Taai HR, Al-Nuaeyme HA, Khudhair AM. Molecular study of genetic diversity in Escherichia coli

isolated from different clinical sources. Biochem Cell Arch. 2018;18(2):2553-60. [Google Scholar]

Maleki D, Jahromy SH, Karizi SZ, Eslami P. The prevalence of acrA and acrB genes among multiple-drug resistant uropathogenic Escherichia coli isolated from patients with UTI in Milad Hospital, Tehran. Avicenna J Clin

Microbiol Infect. 2017;4(1):39785. [Google Scholar]

Shah C, Baral R, Bartaula B, Shrestha LB. Virulence factors of uropathogenic Escherichia coli (UPEC)

and correlation with antimicrobial resistance. BMC Microbiol. 2019 Sep 2;19(1):204. [PubMed] [Google

Scholar]

Abernethy J, Guy R, Sheridan EA, Hopkins S, Kiernan M, Wilcox MH, Johnson AP, Hope R; E. coli bacteraemia

sentinel surveillance group. Epidemiology of Escherichia coli bacteraemia in England: results of an enhanced

sentinel surveillance programme. J Hosp Infect. 2017 Apr;95(4):365-75. [PubMed] [Google Scholar]

Ciontea AS, Cristea D, Andrei MM, Popa A, Usein CR. In vitro antimicrobial resistance of urinary Escherichia

coli isolates from outpatients collected in a laboratory during two years, 2015–2017. Romanian Arch Microbiol

Immunol. 2018 Jan;77:28-32. [Google Scholar]

Ranjbar R, Farahani O. The prevalence of virulence genes and virulotypes of Escherichia coli strains

isolated from hospital wastewaters in Tehran, Iran. Iran J Public Health. 2018 May;47(5):713. [PubMed]

[Google Scholar]

Waters NR, Abram F, Brennan F, Holmes A, Pritchard L. Easy phylotyping of Escherichia coli via the EzClermont web app and command-line tool. Access Microbiol. 2020;2(9):acmi000143. [PubMed] [Google Scholar]

Iranpour D, Hassanpour M, Ansari H, Tajbakhsh S, Khamisipour G, Najafi A. Phylogenetic groups of

Escherichia coli strains from patients with urinary tract infection in Iran based on the new Clermont phylotyping

method. Biomed Res Int. 2015;2015:846219. [PubMed] [Google Scholar]

Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet

O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, El Karoui M, Frapy E,

Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguénec C, Lescat M, Mangenot S, Martinez-Jéhanne V, Matic

I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Médigue

C, Rocha EP, Denamur E. Organised genome dynamics in the Escherichia coli species results in highly diverse

adaptive paths. PLoS Genet. 2009 Jan;5(1):e1000344. [PubMed] [Google Scholar]

Dai J. Characterization of antimicrobial resistance in chicken-source phylogroup F Escherichia coli: similar

populations and resistance spectrums between E. coli recovered from chicken colibacillosis tissues and

retail raw meats in Eastern China. Poult Sci. 2021 Sep;100(9):101370. [PubMed] [Google Scholar]

Zhao R, Shi J, Shen Y, Li Y, Han Q, Zhang X, Gu G, Xu J. Phylogenetic distribution of virulence genes among

ESBL-producing uropathogenic Escherichia coli isolated from long-term hospitalized patients. J Clin Diagn Res.

Jul;9(7):DC01. [PubMed] [Google Scholar]

Lee JH, Subhadra B, Son YJ, Kim DH, Park HS, Kim JM, Koo SH, Oh MH, Kim HJ, Choi CH. Phylogenetic

group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia

coli strains isolated from patients with urinary tract infections in South Korea. Lett Appl Microbiol. 2016

Jan;62(1):84-90. [PubMed] [Google Scholar]

Ejrnæs K, Stegger M, Reisner A, Ferry S, Monsen T, Holm SE, Lundgren B, Frimodt-Møller N. Characteristics ofEscherichia coli causing persistence or relapse of urinary tract infections: phylogenetic groups, virulence factors and biofilm formation. Virulence. 2011 Nov;2(6):528-37. [PubMed] [Google Scholar]

Bashir S, Haque A, Sarwar Y, Ali A, Anwar MI. Virulence profile of different phylogenetic groups of locally

isolated community-acquired uropathogenic E. coli from Faisalabad region of Pakistan. Ann Clin Microbiol

Antimicrob. 2012;11:23. [PubMed] [Google Scholar]

Dadi BR, Abebe T, Zhang L, Mihret A, Abebe W, Amogne W. Distribution of virulence genes and phylogenetics

of uropathogenic Escherichia coli among urinary tract infection patients in Addis Ababa, Ethiopia. BMC Infect

Dis. 2020;20:108. [PubMed] [Google Scholar]

Paniagua-Contreras GL, Monroy-Pérez E, Rodríguez-Moctezuma JR, Domínguez-Trejo P, Vaca-Paniagua

F, Vaca S. Virulence factors, antibiotic resistance phenotypes and O-serogroups of Escherichia coli

strains isolated from community-acquired urinary tract infection patients in Mexico. J Microbiol Immunol

Infect. 2017;50(4):478-85. [PubMed] [Google Scholar]

Dubois D, Delmas J, Cady A, Robin F, Sivignon A, Oswald E, Bonnet R. Cyclomodulins in urosepsis strains of

Escherichia coli. J Clin Microbiol. 2010 Jun;48(6):2122-9. [PubMed] [Google Scholar]

Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity factors of genomic

islands in intestinal and extraintestinal Escherichia coli. Front Microbiol. 2020;11:2065. [PubMed] [Google

Scholar]

Published
2023-05-04