Genomic Glimpse of the Chromatin Modifier SET Domain family in Plasmodium falciparum

  • Manjeri Kaushik Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
  • Priyanka Chahar Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
  • Ashima Nehra Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
  • Naresh Kumar Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
  • Ritu Gill Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India. https://orcid.org/0000-0002-8959-3089
Keywords: Malaria, Plasmodium falciparum, SET domain, Histone Lysine Methyltransferases

Abstract

Histones N-terminal tails are the sites for Post-Translational Modifications (PTMs) that regulate the chromatin structure, thus chromatin associated processes. PTMs include methylation, acetylation, phosphorylation, ubiquitination, sumoylation, and ribosylation. Histone lysine methylation is associated with both transcription activation and repression. The SET domain proteins carry out the histone lysine methylation on the N-terminal tails of histones H3 and H4 and are called Histone Lysine Methyltransferases (HKMTs). A total of ten SET domain genes have been identified in human malarial parasite Plasmodium falciparum. The present study provides detailed computational analysis of P. falciparum SET domain proteins (PfSETs). The analyses cover PfSET family in terms of domain composition, physiochemical properties, subcellular localization, expression profiling and phylogenetic relationships. The work also highlights the conservation of important catalytic residues in PfSETs. The present study provides a detailed insight into the PfSET family, thus opens a platform for further developments.

How to cite this article:
Kaushik M, Chahar P, Nehra A, Kumar N, Gill R. Genomic Glimpse of the Chromatin Modifier SET Domain family in Plasmodium falciparum. J Commun Dis 2019; 51(4): 29-40.

DOI: https://doi.org/10.24321/0019.5138.201934

References

World Malaria Report, 2018. Available from: https://www.who.int/malaria/publications/world-malariareport-

/report/en/.

Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD et al. A proteomic view of

the Plasmodium falciparum life cycle. Nature 2002; 419(6906): 520-526. Available from: https://www.

nature.com/articles/nature01107 [PubMed/ Google Scholar].

Lasonder E, Ishihama Y, Andersen JS, Vermunt AM, Pain A, Sauerwein RW et al. Analysis of the

Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 2002; 419(6906): 537-

Available from: https://www.nature.com/articles/nature01111 [PubMed/ Google Scholar].

Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL et al. The transcriptome of the intraerythrocytic

developmental cycle of Plasmodium falciparum. PLoS Biol 2003; 1(1): E5. Available from: https://journals.

plos.org/plosbiology/article?id=10.1371/journal.pbio.0000005 [Google Scholar].

Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD et al. Discovery of gene function by expression

profiling of the malaria parasite life cycle. Science 2003; 301(5639): 1503-1508. Available from: https://

science.sciencemag.org/content/301/5639/1503.long [PubMed/ Google Scholar].

Fischle W, Wang Y, Allis CD. Histone and chromatin crosstalk. Curr Opin Cell Biol 2003; 15: 172-183. Available

from: https://www.sciencedirect.com/science/article/abs/pii/S0955067403000139?via%3Dihub [PubMed/

Google Scholar].

Cui L, Miao J. Chromatin-Mediated Epigenetic Regulation in the Malaria Parasite Plasmodium

falciparum. Eukaryot Cell 2010; 9(8): 1138-1149. [PubMed/ Google Scholar].

Murray K. The occurrence of N-methyl lysine in histones. Biochemistry 1964; 3(1): 10-15. Available from: https://pubs.acs.org/doi/abs/10.1021/bi00889a003 [Google Scholar].

Schneider R, Bannister A, Kouzarides T. Unsafe SETs: Histone methyltransferases and cancer. Trends Biochem

Biol 2002; 27(8): 396-402. [PubMed/ Google Scholar].

Kouzarides T. Chromatin modifications and their function. Cell 2007; 128: 693-705. [PubMed/ Google

Scholar].

Jenuwein T, Laible G, Dorn R, Reuter G. SET domain proteins modulate chromatin domains in eu- and

heterochromatin. Cell Mol Life Sci 1998; 54(1): 80-93. Available from: https://link.springer.com/

article/10.1007%2Fs000180050127 [PubMed/ Google Scholar].

Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M et al. Regulation of chromatin structure by

site-specific histone H3 methyltransferases. Nature 2000; 406: 593-599. Available from: https://www.

nature.com/articles/35020506 [PubMed/ Google Scholar].

Lei L, Zhou SL, Ma H, Zhang LS. Expansion and diversification of the SET domain gene family

following whole-genome duplications in Populus trichocarpa. Evolutionary Biology 2012; 12(51):

-2148. Available from: https://link.springer.com/article/10.1186/1471-2148-12-51 [PubMed/ Google

Scholar].

Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G. The protein encoded by the Drosophila

position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of

homeotic gene complexes. EMBO J 1994; 13(16): 3822-3831. [PubMed/ Google Scholar].

Jones RS, Gelbart WM. The Drosophila Polycombgroup gene Enhancer of zeste contains a region with

sequence similarity to trithorax. Mol Cell Biol 1993; 13(10): 6357-6366. Available from: https://mcb.asm.

org/content/13/10/6357.long [PubMed/ Google Scholar].

Stassen MJ, Bailey D, Nelson S, Chinwalla V, Harte PJ. The Drosophila trithorax proteins contain a novel

variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other

chromosomal proteins. Mech Dev 1995; 52(2-3): 209-223. Available from: https://www.sciencedirect.com/

science/article/pii/092547739500402M?via%3Dihub [PubMed/ Google Scholar].17. Coetzee N, Sidoli S, van Biljon R, Painter H, Llinás M, Garcia BA et al. Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci Rep 2017; 7(1): 607. Available from: https://www.nature.com/articles/s41598-017-00687-7 [PubMed/ Google Scholar].

Read DF, Cook K, Lu YY, Le Roch KG, Noble WS. Predicting gene expression in the human malaria parasite

Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features.

PLoS Comput Biol 2019; 15(9): e1007329. Available from: https://journals.plos.org/ploscompbiol/article

?id=10.1371/journal.pcbi.1007329 [PubMed/ Google Scholar].

Jiang L, Mu J, Zhang Q, Ni T, Srinivasan P, Rayavara K et al. PfSETvs methylation of histone H3K36 represses

virulence genes in Plasmodium falciparum. Nature 2013; 499(7457): 223-227. Available from: https://

www.nature.com/articles/nature12361 [PubMed/ Google Scholar].

Aurrecoechea C, Brestelli J, Brunk BP, et al. PlasmoDB: a functional genomic database for malaria parasites.

Nucleic Acids Res 2009; 37: D539-543. Available from: https://academic.oup.com/nar/article/37/suppl_1/

D539/1012097 [PubMed/ Google Scholar].

Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 2018; 46: D493-D496. Available from: https://academic.oup.com/nar/article/46/D1/D493/4429069 [PubMed/ Google

Scholar].

Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 1996; 241(3): 779-786. Available from: https://febs.onlinelibrary.wiley.com/

doi/full/10.1111/j.1432-1033.1996.00779.x?sid=nlm%3Apubmed [PubMed/ Google Scholar].

Chou KC, Shen HB. A new method for predicting the sub-cellular localization of eukaryotic proteins with

both single and multiple sites: Euk-mPLoc 2.0. PLoS ONE 2010; 5(4): e9931. Available from: https://journals.plos.

org/plosone/article?id=10.1371/journal.pone.0009931 [PubMed/ Google Scholar].

Zuegge J, Ralph S, Schmuker M, McFadden GI, Schneider G. Deciphering apicoplast targeting signalsfeature

extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 2001; 280(1-2): 19-26. [PubMed/ Google Scholar].

Silvestrini F, Lasonder E, Olivieri A, Camarda G, van Schaijk B, Sanchez M et al. Protein export marks the

early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics

; 9(7): 1437-48. Available from: https://www.mcponline.org/content/9/7/1437.long [PubMed/

Google Scholar].

Solyakov L, Halbert J, Alam MM, Semblat JP, Dorin-Semblat D, Reininger L et al. Global kinomic and

phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat Commun 2011; 2:

Available from: https://www.nature.com/articles/ncomms1558 [PubMed/ Google Scholar].

Treeck M, Sanders JL, Elias JE, Boothroyd JC. The phosphoproteomes of Plasmodium falciparum and

Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe

; 10(4): 410-419. [PubMed/ Google Scholar].

Oehring SC, Woodcroft BJ, Moes S, Wetzel J, Dietz O, Pulfer A et al. Organellar proteomics reveals

hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum. Genome Biol 2012;

(11): R108. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/gb-2012-13-11-r108 [PubMed/ Google Scholar].

Lindner SE, Swearingen KE, Harupa A, Vaughan AM, Sinnis P, Moritz RL et al. Total and putative surface

proteomics of malaria parasite salivary gland sporozoites. Mol Cell Proteomics 2013; 12(5): 1127-1143. Available from: https://www.mcponline.org/content/12/5/1127.long [PubMed/ Google Scholar].

Pease BN, Huttlin EL, Jedrychowski MP, Talevich E, Harmon J, Dillman T et al. Global analysis of protein

expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development.

J Proteome Res 2013; 12(9): 4028-4045. Available from: https://pubs.acs.org/doi/10.1021/pr400394g

[PubMed/ Google Scholar].

Llinás M, Bozdech Z, Wong ED, Adai AT, DeRisi JL. Comparative whole genome transcriptome analysis

of three Plasmodium falciparum strains. Nucleic Acids Res 2006; 34(4): 1166-1173. Available from: https://

academic.oup.com/nar/article/34/4/1166/1337467 [PubMed/ Google Scholar].

Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S et al. Human Protein Reference

Database - 2009 Update. Nucleic Acids Res 2009; 37: D767-D772. Available from: https://academic.oup.

com/nar/article/37/suppl_1/D767/1019294 [PubMed/ Google Scholar].

Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.69. Department of Genome Sciences,

University of Washington, Seattle 2009.

Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 2002; 12(12): 1052-1058. [PubMed/ Google

Scholar].

Cui L, Fan Q, Cui L, Miao J. Histone lysine methyltransferases and demethylases in Plasmodium

falciparum. International Journal for Parasitology 2008; 38(2008): 1083-1097. Available from: https://

www.sciencedirect.com/science/article/abs/pii/S0020751908000210 [PubMed/ Google Scholar].

Dillon SC, Zhang X, Trievel RC, et al. The SET-domain protein superfamily: protein lysine methyltransferases.

Genome Biology 2005; 6: 227. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/

gb-2005-6-8-227 [Google Scholar].

Cheng X, Collins RE, Zhang X. Structural and sequence motifs of protein (histone) methylation enzymes.

Annu Rev Biophys Biomol Struct 2005; 34: 267-294. Available from: https://www.annualreviews.org/doi/

abs/10.1146/annurev.biophys.34.040204.144452?rfr_dat=cr_pub%3Dpubmed&url_ver=Z39.88-2003&rfr_

id=ori%3Arid%3Acrossref.org&journalCode=biophys.3 [PubMed/ Google Scholar].

Published
2020-02-24