A Review on the Influence of Environmental Temperature in the Development, Survival, Population Dynamics and Spatial Distribution of Aedes albopictus (Skuse 1894) (Diptera: Culicidae) Mosquito
Abstract
Environmental temperature is an important abiotic element that plays a significant role in various aspects of the insect life cycle. Insects have evolved different mechanisms to adjust to temperature variations in order to avoid thermal stress over evolutionary time. They have been able to invade practically every type of habitat due to these adaptations. Aedes albopictus, the Asian tiger mosquito, is a Southeast Asian forest-dwelling mosquito species that has spread throughout the world in the last forty years. Since it can effectively transmit a variety of viruses, Aedes albopictus is a significant public health issue in all areas where it has already been entrenched. The current article shows the existing understanding of the impact of environmental temperature on the dispersion and ecology of Aedes albopictus.
How to cite this article:
Johnson MK, Sebastian H, Aneesh EM, Menon LD. A Review on the Influence of Environmental Temperature in the Development, Survival, Population Dynamics and Spatial Distribution of Aedes albopictus (Skuse 1894) (Diptera: Culicidae) Mosquito. J Commun Dis. 2023;55(1):58-63.
DOI: https://doi.org/10.24321/0019.5138.202309
References
Hallman GJ, Denlinger DL. Temperature sensitivity in insects and application in integrated pest management.
CRC Press; 2019. [Google Scholar]
Huey RB, Stevenson RD. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool. 1979;19(1):357-66. [Google Scholar]
Benoit JB, Lopez-Martinez G, Patrick KR, Phillips ZP, Krause TB, Denlinger DL. Drinking a hot blood meal
elicits a protective heat shock response in mosquitoes. Proc Natl Acad Sci U S A. 2011;108(19):8026-9.
[PubMed] [Google Scholar]
Lahondère C, Lazzari CR. Mosquitoes cool down during blood feeding to avoid overheating. Curr Biol.
;22(1):40-5. [PubMed] [Google Scholar]
World Health Organization. World health statistics 2019: monitoring health for the SDGs, sustainable
development goals. World Health Organization; 2019.
Sivan A, Shriram AN, Vanamail P, Sugunan AP. Impact of temperature variant on survival of Aedes
albopictus Skuse (Diptera: Culicidae): implications on thermotolerance and acclimation. Neotrop Entomol.
;48(4):561-71. [PubMed] [Google Scholar]
Marini G, Manica M, Arnoldi D, Inama E, Rosà R, Rizzoli A. Influence of temperature on the life-cycle
dynamics of Aedes albopictus population established at temperate latitudes: a laboratory experiment. Insects.
;11(11):808. [PubMed] [Google Scholar]8. Delatte H, Gimonneau G, Triboire A, Fontenille D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of
Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol. 2009;46(1):33-41.
[PubMed] [Google Scholar]
Alto BW, Juliano SA. Precipitation and temperature effects on populations of Aedes albopictus (Diptera:
Culicidae): implications for range expansion. J Med Entomol. 2001;38(5):646-56. [PubMed] [Google
Scholar]
Löwenberg Neto P, Navarro-Silva MA. Development, longevity, gonotrophic cycle and oviposition of Aedes
albopictus Skuse (Diptera: Culicidae) under cyclic temperatures. Neotrop Entomol. 2004;33:29-33.
[Google Scholar]
Briegel H, Timmermann SE. Aedes albopictus (Diptera: Culicidae): physiological aspects of development
and reproduction. J Med Entomol. 2001;38:566-71. [PubMed] [Google Scholar]
Monteiro LC, de Souza JR, de Albuquerque CM. Eclosion rate, development and survivorship of Aedes albopictus (Skuse) (Diptera: Culicidae) under different water temperatures. Neotrop Entomol. 2007;36:966-71.
[PubMed] [Google Scholar]
Phanitchat T, Apiwathnasorn C, Sumroiphon S, Samung Y, Naksathit A, Thawornkuno C, Juntarajumnong W,
Sungvornyothin S. The influence of temperature on the developmental rate and survival of Aedes albopictus
in Thailand. Southeast Asian J Trop Med Public Health. 2017;48:799-808. [Google Scholar]
Gubler DJ, Bhattacharya NC. Observations on the reproductive history of Aedes (Stegomyia) albopictus in
the laboratory. Mosq News. 1971;31(3):356-9. [Google Scholar]
Roiz D, Rosa R, Arnoldi D, Rizzoli A. Effects of temperature and rainfall on the activity and dynamics
of host-seeking Aedes albopictus females in northern Italy. Vector Borne Zoonotic Dis. 2010;10(8):811-6.
[PubMed] [Google Scholar]
Ezeakacha NF, Yee DA. The role of temperature in affecting carry-over effects and larval competition in
the globally invasive mosquito Aedes albopictus. Parasit Vectors. 2019;12(1):123. [PubMed] [Google Scholar]
Joshi DS. Effect of fluctuating and constant temperatures on development, adult longevity and fecundity in the mosquito Aedes krombeini. J Ther Biol. 1996;21(3):151-4. [Google Scholar]
Alto BW, Juliano SA. Precipitation and temperature effects on populations of Aedes albopictus (Diptera:
Culicidae): implications for range expansion. J Med Entomol. 2001;38(5):646-56. [PubMed] [Google
Scholar]
Kramer IM, Pfeiffer M, Steffens O, Schneider F, Gerger V, Phuyal P, Braun M, Magdeburg A, Ahrens B, Groneberg DA, Kuch U, Dhimal M, Müller R. The ecophysiological plasticity of Aedes aegypti and Aedes albopictus concerning overwintering in cooler ecoregions is driven by local climate and acclimation capacity. Sci Total Environ. 2021;778:146128. [PubMed] [Google Scholar]
Klowden MJ, Briegel H. Mosquito gonotrophic cycle and multiple feeding potential: contrasts between
Anopheles and Aedes (Diptera: Culicidae). J Med Entomol. 1994;31(4):618-22. [PubMed] [Google Scholar]
Mori A, Wada Y. The gonotrophic cycle of Aedes albopictus in the field. Trop Med. 1977;19(3/4):141-
[Google Scholar]
Hawley WA. The biology of Aedes albopictus. J Am Mosq Control Assoc Suppl. 1998;1:1-39. [PubMed]
[Google Scholar]
Paaijmans KP, Cator LJ, Thomas MB. Temperaturedependent pre-bloodmeal period and temperaturedriven
asynchrony between parasite development and mosquito biting rate reduce malaria transmission
intensity. PloS One. 2013;8(1):e55777. [PubMed] [Google Scholar]
Couret J, Benedict MQ. A meta-analysis of the factors influencing development rate variation in Aedes aegypti
(Diptera: Culicidae). BMC Ecol. 2014;14(1):3. [PubMed] [Google Scholar]
Teng HJ, Apperson CS. Development and survival of immature Aedes albopictus and Aedes triseriatus
(Diptera: Culicidae) in the laboratory: effects of density, food, and competition on response to temperature. J
Med Entomol. 2000;37(1):40-52. [PubMed] [Google Scholar]
Alto BW, Juliano SA. Precipitation and temperature effects on populations of Aedes albopictus (Diptera:
Culicidae): implications for range expansion. J Med Entomol. 2001;38(5):646-56. [PubMed] [Google
Scholar]
Focks DA, Linda SB, Craig Jr GB, Hawley WA, Pumpuni CB. Aedes albopictus (Diptera: Culicidae): a statistical
model of the role of temperature, photoperiod, and geography in the induction of egg diapause. J Med
Entomol. 1994;31(2):278-86. [PubMed] [Google Scholar]
Hanson SM, Craig Jr GB. Aedes albopictus (Diptera: Culicidae) eggs: field survivorship during northern
Indiana winters. J Med Entomol. 1995;32(5):599-604. [PubMed] [Google Scholar]
Chaves LF, Friberg MD. Aedes albopictus and Aedes flavopictus (Diptera: Culicidae) pre-imaginal abundance
patterns are associated with different environmental factors along an altitudinal gradient. Curr Res InsectSci. 2020;1:100001. [PubMed] [Google Scholar]
Mori A, Oda T, Wada Y. Studies on the egg diapause and overwintering of Aedes albopictus in Nagasaki.
Trop Med. 1981;23(2):79-90. [Google Scholar]
Higa Y, Touma T, Shinjo Y, Onodera I, Miyagi I. Seasonal changes in oviposition activity, hatching
and embryonation rates of eggs of Aedes albopictus (Diptera: Culicidae) on three islands of the Ryukyu
Archipelago, Japan. Med Entomol Zool. 2007;58(1):1-10. [Google Scholar]
Hawley WA, Pumpuni CB, Brady RH, Craig Jr GB. Overwintering survival of Aedes albopictus
(Diptera: Culicidae) eggs in Indiana. J Med Entomol. 1989;26(2):122-9. [PubMed] [Google Scholar]
Hanson SM, Craig Jr GB. Cold acclimation, diapause, and geographic origin affect cold hardiness in eggs of
Aedes albopictus (Diptera: Culicidae). J Med Entomol. 1994;31(2):192-201. [PubMed] [Google Scholar]
Roiz D, Rosa R, Arnoldi D, Rizzoli A. Effects of temperature and rainfall on the activity and dynamics
of host-seeking Aedes albopictus females in northern Italy. Vector Borne Zoonotic Dis. 2010;10(8):811-6.
[PubMed] [Google Scholar]
Tsunoda T, Cuong TC, Dong TD, Yen NT, Le NH, Phong TV, Minakawa N. Winter refuge for Aedes aegypti and
Ae. Albopictus mosquitoes in Hanoi during winter. PloS One. 2014;9(4):95606. [PubMed] [Google Scholar]
Elbers AR, Koenraadt CJ, Meiswinkel R. Mosquitoes and Culicoides biting midges: vector range and the
influence of climate change. Rev Sci Tech. 2015;34:123-37. [PubMed] [Google Scholar]
Suwonkerd W, Tsuda Y, Takagi M, Wada Y. Seasonal occurrence of Aedes aegypti and Ae. albopictus in
used tires in 1992-1994, Chiangmai, Thailand. Trop Med. 1997;38(3):101-5. [Google Scholar]
Mogi M. Overwintering strategies of mosquitoes (Diptera: Culicidae) on warmer islands may predict
impact of global warming on Kyushu, Japan. J Med Entomol. 1996;33(3):438-44. [PubMed] [Google
Scholar]
Tsunoda T, Chaves LF, Nguyen GT, Nguyen YT, Takagi M. Winter activity and diapause of Aedes albopictus
(Diptera: Culicidae) in Hanoi, Northern Vietnam. J Med Entomol. 2015;52(6):1203-12. [PubMed] [Google
Scholar]
Bouattour A, Khrouf F, Rhim A, M’ghirbi Y. First detection of the Asian Tiger mosquito, Aedes (Stegomyia)
albopictus (Diptera: Culicidae), in Tunisia. J Med Entomol. 2019;56(4):1112-5. [PubMed] [Google
Scholar]
Jia P, Chen X, Chen J, Lu L, Liu Q, Tan X. How does the dengue vector mosquito Aedes albopictus respond
to global warming? Parasit Vectors. 2017;10(1):140. [PubMed] [Google Scholar]
Hales S, de Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes
on global distribution of dengue fever: an empirical model. Lancet. 2002;360(9336):830-4. [PubMed]
[Google Scholar]
Gratz NG. Critical review of the vector status of Aedes albopictus. Med Vet Entomol. 2004;18(3):215-27.
[PubMed] [Google Scholar]
Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, Bortel WV. A review of the
invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis.
;12(6):435-47. [PubMed] [Google Scholar]
Fischer D, Thomas SM, Niemitz F, Reineking B, Beierkuhnlein C. Projection of climatic suitability
for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Glob Planet Chang.
;78(1-2):54-64. [Google Scholar]
Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, Morse AP. Suitability of European
climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface.
;9(75):2708-17. [PubMed] [Google Scholar]
Alto BW, Juliano SA. Precipitation and temperature effects on populations of Aedes albopictus (Diptera:
Culicidae): implications for range expansion. J Med Entomol. 2001;38(5):646-56. [PubMed] [Google
Scholar]
Kobayashi M, Nihei N, Kurihara T. Analysis of northern distribution of Aedes albopictus (Diptera: Culicidae)
in Japan by geographical information system. J Med Entomol. 2002;39(1):4-11. [PubMed] [Google Scholar]
Mogi M, Tuno N. Impact of climate change on the distribution of Aedes albopictus (Diptera: Culicidae) in
northern Japan: retrospective analyses. J Med Entomol 2014;51(3):572-9. [PubMed] [Google Scholar]
Reinhold JM, Lazzari CR, Lahondère C. Effects of the environmental temperature on Aedes aegypti and
Aedes albopictus mosquitoes: a review. Insects. 2018;9(4):158. [PubMed][GoogleScholar]
Copyright (c) 2023 Auhtor's
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.