Role of Pyrethroid-elicited Mosquito Behaviour in Control Programmes
Abstract
This review study envisages the role of insecticide-elicited mosquito behaviour for disease eradication programmes. Changes in behaviour due to insecticides may, at times, be of more practical importance
than the actual lethal effect of the insecticide, especially if these changes help to disrupt the contact between man and mosquito. Two important aspects of mosquito behaviour, either repellency or irritability and biting patterns in response to insecticide exposure have been taken into consideration. This paper throws light on the
significance of two synthetic pyrethroids, permethrin and deltamethrin, when impregnated into mosquito nets for self-protection and vector control. The determination of any changes with respect to behaviour of
mosquitoes, before and after the introduction of bed nets is reflected in the potential of the mosquitoes to transmit diseases and can be of great epidemiological significance in mosquito abatement programmes.
How to cite this article:
Sahgal A, Gupta R, Saxena T, Mehra N, Arora R. Role of Pyrethroid-elicited Mosquito Behaviour in Control Programmes J Commun Dis. 2022;54(3):88-94.
DOI: https://doi.org/10.24321/0019.5138.202293
References
Brown AW. Insecticide resistance in mosquitoes: a pragmatic review. J Am Mosq Control Assoc. 1986
Jun;2:123-40. [PubMed] [Google Scholar]
Sanou A, Nelli L, Guelbéogo WM, Cissé F, Tapsoba M, Ouédraogo P, Ranson H, Matthiopoulos J, Ferguson HM.
Insecticide resistance and behavioural adaptation as a response to long lasting insecticidal net deployment
in malaria vectors in the Cascades region of Burkina Faso. Sci Rep. 2021 Sep;11:17569. [PubMed] [Google
Scholar]
Kreppel KS, Viana M, Main BJ, Johnson PCD, Govella NJ, Lee Y, Maliti D, Meza FC, Lanzaro GC, Ferguson
HM. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in
Tanzania. Sci Rep. 2020 Sep;10:14527. [PubMed] [Google Scholar]
Harris CR, Kinoshita GB. Influence of posttreatment temperature on the toxicity of pyrethroid insecticides.
J Econ Entomol. 1977;70:215-8. [Google Scholar]
Mattingly PF. Mosquito behaviour in relation to disease eradication programmes. Ann Rev Entomol.
;7:419-36. [PubMed] [Google Scholar]
Morrison FO. Morphological and habit changes correlated with resistance to insecticide treatment.
st Annual Report of Entomological Society Ontario. 1951:41-3.
Chareonviriyaphap T, Roberts DR andre RG, Harlan H, Bangs MJ. Pesticide avoidance behaviour in Anopheles
albimanus Wiedemann. J Am Mosq Control Assoc. 1997 Jun;13:171-83. [PubMed] [Google Scholar]
Roberts DR, Chareonviriyaphap T, Harlan HH, Hshieh P. Methods for testing and analyzing excito-repellency
responses of malaria vectors to insecticides. J Am Mosq Control Assoc. 1997Mar;13:13-7. [PubMed]
[Google Scholar]
Roberts DR andre RG. Insecticide resistance issues in vector-borne disease control. Am J Trop Med & Hyg.
;50(6 Suppl):21-34. [PubMed] [Google Scholar]
Hougard JM, Duchon S, Darriet F, Zaim M, Rogier C, Guillet P. Comparative performances, under laboratory
conditions, of seven pyrethroid insecticides used for impregnation of mosquito nets. Bull World Health
Organ. 2003;81:324-33. [PubMed] [Google Scholar]
Coosemans MH, Sales S. Stage IV evalu-ation of five insecticides-OMS-43 OMS-1810OMS-1821 OMS-1825
and OMS-1998-against anopheline mosquitoes at the Soumousso experimental station, Bobo Dioulasso,
Upper Volta. WHO. BC77. 1977;663.
Rishikesh N, Clarke JL, Mathis HL, King JS, Pearson JA. Evaluation of deltamethrin and permethrin against
Anopheles gambiae and Anopheles funestus in a village trial in Nigeria. 1978.
Rishikesh N, Clarke JL, Mathis HL, Pearson JA, Obanewa SJ. Stage V field evaluation of NRDC 161 against
Anopheles gambiae and Anopheles funestus in a group of villages in Nigeria. 1979.
Taylor RN, Hill MN, Stewart DC, Slatter R, Gichanga M. A field evaluation of permethrin (OMS-1821) and NRDC161 (OMS-1998) for residual control of mosquitoes. Mosq News. 1981;41:423-34. [Google Scholar]
Vatandoost H, Borhani N. Susceptibility and irritability levels of main malaria vectors to synthetic pyrethroids
in the endemic areas of Iran. Acta Medica Iranica. 2004;42:240-7. [Google Scholar]
Dhiman S, Yadav K, Acharya BN, Ahirwar RK, Sukumaran D. Behavioural response of mosquito
vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus to pyrethroid and organophosphorus
based slow release insecticidal paint. Parasit Vectors. 2021 May;14(1):259.[PubMed] [Google Scholar]
Haddow AJ. Entomological studies from a high tower in Mpanga Forest, Uganda. VII. The biting behaviour
of mosquitoes and tabanids. Trans R Ent Soc Lond. 1961;113:315-30. [Google Scholar]
Seaton DR, Lumsden WHR. Observations on the effects of age, fertilisation and light on biting by Aedes
aegypti (L.) in a controlled microclimate. Ann Trop Med Parasitol. 1941;35:23-36. [Google Scholar]
Lumsden WHR. Observations on the effect of microclimate on biting Aedes aegypti (L.) (Diptera:
Culicidae). J Exp Biol. 1947 Dec;24(3-4):361-73. [PubMed] [Google Scholar]
Parker AR. Stimuli involved in the attraction of Aedes aegypti L. to man. Bull Entomol Res. 1948;39:387-97.
[PubMed] [Google Scholar]
Parker AR. The effect of a difference in temperature and humidity on certain reactions of female Aedes aegypti L. Bull Entomol Res. 1952;43:221-9. [Google Scholar]
Suleman M, Shirin M, Khawar T. Laboratory studies on mating and biting behaviour of Culex quinquefasciatus Say (Diptera: Culicidae). Bull Zool. 1983;1:121-35. [Google Scholar]
Cooke MK, Kahindi SC, Oriango RM, Owaga C, Ayoma E, Mabuka D, Nyangau D, Abel L, Atieno E, Awuor
S, Drakeley C, Cox J, Stevenson J. A bite before bed: exposure to malaria vectors outside the times of net
use in the highlands of western Kenya. Malar J. 2015 Jun;14:259. [PubMed] [Google Scholar]
Milali MP, Sikulu-Lord MT, Govella N. Bites before and after bedtime can carry a high risk of human malaria
infection. Malar J. 2017 Feb 28;16(1):91. [PubMed] [Google Scholar]
Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, Mihreteab S, Charlwood JD, Bhatt
S, Winskill P, Griffin JT, Churcher TS. Mosquito feeding behaviour and how it influences residual malaria
transmission across Africa. Proc Natl Acad Sci U S A. 2019 Jul;116(30):15086-95. [PubMed] [Google Scholar]
Atmosoedjono S, Van Peenen PFD, See R, Sulianti Saroso J. Man-biting activity of Aedes aegypti (Diptera,
Culicidae) in Djakarta, Indonesia. Mosq News. 1972;32:467-9. [Google Scholar]
Sucharit S, Harinasuta C, Surathin K, Deesin T, Vutikes S, Rongsriyam Y. Some aspects on biting cycles of
Culex quinquefasciatus in Bangkok. Southeast Asian J Trop Med Public Health. 1981;12:74-8. [PubMed]
[Google Scholar]
Rajagopalan PK, Kazmi SJ, Mani TR. Some aspects of transmission of Wuchereria bancrofti and ecology of
Culex pipiens fatigans in Pondicherry. Ind J Med Res. 1977;66:200-15. [PubMed] [Google Scholar]
Reisen WK, Aslam Khan M. Biting rhythms of some Pakistani mosquitoes (Diptera: Culicidae). Bull Entomol
Res. 1978;68:313-30. [Google Scholar]
Kittayapong P, Olanratmanee P, Maskhao P, Byass P, Logan J, Tozan Y, Louis V, Gubler DJ, Wilder-Smith A.
Mitigating diseases transmitted by Aedes mosquitoes: A cluster-randomised trial of permethrin-impregnated
school uniforms. PLoS Neg Trop Dis. 2017;11:e0005197. [PubMed] [Google Scholar]
World Health Organization. Guidelines for Malaria Control. June 3rd, 2022.
Port GR, Boreham PFL. The effect of bed nets on feeding by Anopheles gambiae Giles (Diptera: Culicidae). Bull Entomol Res. 1982;72:483-8. [Google Scholar]
Killeen GF, Marshall JM, Kiware SS, South AB, Tusting LS, Chaki PP, Govella NJ. Measuring, manipulating and
exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Glob Health. 2017
Apr;2(2):e000212. [PubMed] [Google Scholar]
Hervy JP, Sales S. Evaluation de la rémanence de deux pyréthrinoïdes de synthèse-OMS-1821 et OMS-1998-
après imprégnation de différents tissus entrant dans la confection de moustiquaires. OCCGE: Bobo-Dioulasso.
:10. [Google Scholar]
Takken W. Do insecticide treated bednets have an effect on malaria vectors? Trop Med International
Health. 2002;7:1022-30. [PubMed] [Google Scholar]
Enayati AA, Hemingway J. Pyrethroid insecticide resistance and treated bednets efficacy in malaria
control. Pest Biochem Physiol. 2006;84:116-26. [Google Scholar]
Stevens ER, Aldridge A, Degbey Y, Pignandi A, Dorkenoo MA, Hugelen-Padin J. Evaluation of the 2011 longlasting, insecticide-treated net distribution for universal coverage in Togo. Malar J. 2013;12:162. [PubMed]
[Google Scholar]
Denham S, Eisen L, Beaty M, Beaty BJ, Black WC 4th, Saavedra-Rodriguez K. Two novel bioassays to assess
the effects of Pyrethroid-treated netting on knockdown Susceptible versus Resistant strains of Aedes aegypti.
J Amer Mosq Control Assoc. 2015;31:52-62. [PubMed] [Google Scholar]
World Health Organization. The WHO recommended classification of pesticides by hazard and guidelines
to classification 1988-89. WHO/VBC/88, 953; 1988.
Schreck CE, Self LS. Bednets that kill mosquitoes. World Health Forum. 1985;6:342-4. [Google Scholar]
Darriet F, Robert V, Vien NT, Carnevale P, World Health Organization. Evaluation of the efficacy of permethrin
impregnated intact and perforated mosquito nets against vectors of malaria. WHO; 1984. [Google Scholar]
Ranque P, Toure’ TY, Soula G, Le Du Diallo Y, Traora O, Duflo B et al. Use of mosquito nets with deltamethrin
in malaria control. Abstract XI International Congress of Tropical Medicine and Malaria, Calgary, Canada
; p.124.
Zuni L. Deltamethrin treated mosquito net efficacy against Anopheles sinensis and Anopheles dirus
(Abstract), IV Congress sur la Protection de la Sante Humaine et des Cultures en Milieu Tropical, Marseille,
July 1986.
Loong KP, Naidu S, Thevasagayam ES, Cheong WH. Evaluation of the effectiveness of permethrin and DDTimpregnated bednets against Anopheles maculatus. Southeast Asian J Trop Med Pub Health. 1985;4:554-9.
[PubMed] [Google Scholar]
Hii JL, Vun YS, Chin KF, Chua R, Tambakau S, Binisol ES, Fernandez E, Singh N, Chan MK. The influence
of permethrin-impregnated bednets and mass drug administration on the incidence of Plasmodium
falciparum malaria in children in Sabah, Malaysia. Med Vet Entomol. 1987;1:397-407. [PubMed] [Google
Scholar]
Lines JD, Myamba J, Curtis CF. Experimental hut trials of permethrin impregnated mosquito nets and eave
curtains against malaria vectors in Tanzania. Med Vet Entomol. 1987;1:37-51. [PubMed] [Google Scholar]
Charlwood JD, Graves PM. The effect of permethrinimpregnated bednets on a population of Anopheles
farauti in coastal Papua New Guinea. Med Vet Entomol 1987;1:319-27. [PubMed] [Google Scholar]
Ree H. Studies on control effect of the permethrinimpregnated mosquito net against Anopheles farauti
in the experimental hut. Jap J Sani Zool. 1988;39:113-8. [Google Scholar]
Rozendaal JA, Voorham J, Van Hoof JPM, Oostburg BFJ. Efficacy of mosquito nets treated with permethrin in
Suriname. Med Vet Entomol. 1989;3:353-65. [PubMed] [Google Scholar]
Snow RW, Jawara M, Curtis CF. Observations on Anopheles gambiae Giles s.l. during a trial of permethrin
treated bednets in the Gambia. Bull Entomol Res. 1987;77:279-86. [Google Scholar]
World Health Organization. Operational Use of Pyrethroid Impregnated Mosquito Nets for Malaria
Vector Control in the Western Pacific Region. Manila, Philippines: World Health Organization. Report for
Regional Workshop on Malaria Control, August 7-11, 1989, WPR/MAL(1)89.20.
Sharma SK, Upadhyay AK, Haque MA, Padhan K, Tyagi PK, Batra CP, Adak T, Dash AP, Subbarao SK. Village
-scale evaluation of mosquito nets treated with a tablet formulation of deltamethrin against malaria
vectors. Med Vet Entomol. 2005;19:286-92. [PubMed] [Google Scholar]
Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle K, Moyes CL, Henry A, Eckhoff PA,
Wenger EA, Briët O, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, Griffin JT, Fergus CA, Lynch M,
Lindgren F, Cohen JM, Murray CLJ, Smith DL, Hay SI, Cibulskis RE, Gething PW. The effect of malaria control
on Plasmodium falciparum in Africa between 2000-2015. Nature. 2015;526:207-11. [PubMed] [Google
Scholar]
Moiroux N, Chandre F, Hougard JM, Corbel V, Pennetier C. Remote effect of insecticide-treated nets and the
personal protection against malaria mosquito bites. PLOS One. 2017;12:1-13. [PubMed] [Google Scholar]
Darriet F, Guillet P, N’Guessan R, Doannio JM, Koffi A, Konan LY, Carnevale P. Impact of resistance of
Anopheles gambiae s.s. to permethrin and deltamethrin on the efficacy of impregnated mosquito nets. Med
Trop. 1998;58:349-54. [PubMed] [Google Scholar]
Kawada H, Ohashi K, Dida GO, Sonye G, Njenga SM, Mwandawiro C, Minakawa N. Insecticidal and repellent
activities of pyrethroids to the three major pyrethroid-resistant malaria vectors in Western Kenya. Parasite
Vectors. 2014 May;7:208. [PubMed] [Google Scholar]
Zhou G, Li Y, Zhong D, Machani MG, Onyango JA, Wang X, Lee MC, Atieli HE, Mukabana WR, Githure JI,
Githeko AK. Insecticide resistance modifies behavioural response of An. gambiae sensu stricto to insecticide
treated nets. Res Square, 2022. [Google Scholar]
Mbogo CN, Baya NM, Ofulla AV, Githure JI, Snow RW. The impact of permethrin-impregnated bednets on
malaria vectors of the Kenyan coast. Med Vet Entomol. 1996;10:251-9. [PubMed] [Google Scholar]
Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M, Nahlen BL, Gimnig JE,
Kariuki SK, Kolczak MS, Hightower AW. Communitywide effects of permethrin-treated bed nets on child
mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg. 2003;68:121-7. [PubMed] [Google
Scholar]
Ferreira CP, Lyra SP, Azevedo F, Greenhalgh D, Massad E. Modelling the impact of the long-term use of
insecticide-treated bed nets on Anopheles mosquito biting time. Malaria J. 2017;16:373. [PubMed] [Google
Scholar]
Taylor B. Changes in the feeding behaviour of a malaria vector, Anopheles farauti Lav. following use of DDT
as a residual spray in houses in the British Solomon Islands protectorate. Trans Royal Entomol Soc, London.
;127:277-92. [Google Scholar]
Thomsen EK, Koimbu G, Pulford J, Jamea-Maiasa S, Ura Y, Keven JB, Siba PM, Mueller I, Hetzel MW, Reimer
LJ. Mosquito behaviour change after distribution of bednets results in decreased protection against malaria
exposure. J Infec Diseases. 2017;215:790-7. [PubMed] [Google Scholar]
Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding
among residual malaria vector populations following increased use of insecticide-treated nets in rural
Tanzania. Malar J. 2011;10:80. [PubMed] [Google Scholar]
Bayoh MN, Walker ED, Kosgei J, Ombok M, Olang GB, Githeko AK, Killeen GF, Otieno P, Desai M, Lobo NF,
Vulule JM, Hamel MJ, Kariuki S, Gimnig JE. Persistently high estimates of late night, indoor exposure to malaria
vectors despite high cover of insecticide treated nets. Parasit Vectors. 2014;7:380. [PubMed] [Google Scholar]
Grieco JP, Achee NL., Chareonviriyaphap T, Suwonkerd W, Chauhan KR, Sardelis M, Roberts, DR. A new
classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS One.
;2:e716. [PubMed] [Google Scholar]
Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HC, Gould F, Hastings I, Marshall J, Ranson
H, Rowland M, Shaman J, Lindsay SW. The importance of mosquito behavioural adaptations to malaria control
in Africa. Evolution. 2013;67(4):1218-30. [PubMed] [Google Scholar]
Carrasco D, Lefevre T, Moiroux N, Pennetier C, Chandre F, Cohuet A. Behavioural adaptations of mosquito
vectors to insecticide control. Curr Opin Insect Sci. 2019;34:48–54. [PubMed] [Google Scholar]
Waite JL, Swain S, Lynch PA, Sharma SK, Haque MA, Montgomery J, Thomas MB. Increasing the potential
for malaria elimination by targeting zoophilic vectors. Sci Rep. 2017;7:40551. [PubMed] [Google Scholar]
Copyright (c) 2022 Author's
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.