A Review on Antimalarial Activities of Aloe species Extracts

  • Adamu Tizazu Yadeta Department of Chemistry, College of Natural and Computational Sciences, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia
Keywords: Aloe species, Aloe extracts, Malaria, Antimalarial, and Chloroquine

Abstract

Among the most prevalent diseases caused by protozoan parasites, the parasites of the genus Plasmodium cause malaria. Malaria is transmitted to humans by the infected female anopheles mosquito. Malaria is a vector-borne disease and it continues to have devastating effects on people’s lives, especially in developing countries. To control malaria, many popular practices exist to avoid the nuisance of mosquito bites such as fumigation, burning green leaves on the hut’s threshold, mosquito coils, insecticide sprays, and repellents. Due to the vast metabolic diversity of plants, natural products may offer relatively cheaper and an easy alternative treatment opportunity to treat malaria. The genus Aloe is one of the top medicinal plants that has maintained
its popularity over the course of time. Aloe in one form or another is a common domestic medicine and is the basis of most pharmaceutical preparations. Various components present in the Aloe species have been found effective against many diseases, including malaria. Although most of the antimalarial activities were based on in vivo tests, in vitro tests were also analyzed by certain researchers. The leaf latex in all Aloe species and the isolated compounds displayed antimalarial activity in a dose-independent manner. Considering that natural molecules have acted as natural templates in the development of antimalarial agents, it is encouraged to investigate further analyses into Aloe constituents and their values against malaria. It should be followed with phytochemical and pharmacological analyses to give scientific ground to medicinal knowledge and future potential utilization.

How to cite this article:
Yadeta AT. A Review on Antimalarial Activities of Aloe species Extracts. J Commun Dis. 2022;54(3):58-66.

DOI: https://doi.org/10.24321/0019.5138.202290

References

Sumsakul W, Plengsuriyakarn T, Chaijaroenkul W, Viyanant V, Karbwang J, Na-Bangchang K. Antimalarial

activity of plumbagin in vitro and in animal models. BMC Complement Altern Med. 2014 Jan;14:15. [PubMed]

[Google Scholar]

Paulos B, Bisrat D, Gedif T, Asres K. Antimalarial and antioxidant activities of the leaf exudates and

a naphthalene derivative from Aloe otallensis Baker. Ethiop Pharm J. 2011;29(2):100-7. [Google Scholar]

Koning-Ward T. F. De, Dixon M. W. A, L. Tilley, Gilson P. R. “Plasmodium species: Master renovators of their

host cellsâ€. Nat Rev Microbiol. 2016 Aug;14(8):494-507. [PubMed] [Google Scholar]

Rahi M, Sharma A. Malaria control initiatives that have the potential to be game changers in India’s quest

for malaria elimination. Health Policy. 2022;10:1-12. [Google Scholar]

World Health Organization (WHO). Available from: https://www.who.int/. 2022. [PubMed] [Google

Scholar]

Hanboonkunupakarn B, White NJ. The threat of antimalarial drug resistance. Trop Dis Travel Med

Vaccines. 2016 Jul;2:10. [PubMed] [Google Scholar]

Moore SJ, Lenglet AD. An overview of plants used as insect repellents. 2004. [Google Scholar]

Kumar S, Yadav M, Yadav A, Rohilla P, Yadav JP. Antiplasmodial potential and quantification of aloin

and aloe-emodin in A. vera collected from different climatic regions of India. BMC Complement Altern

Med. 2017 Jul;17(1):369. [PubMed] [Google Scholar]

Dluya T, Daniel D, Yusuf U. In vitro antioxidant activity and phytochemical evaluation of five medicinal plants

extract. Pharm Chem J. 2017;4(5):73-82.

Kaur S, Mondal P. Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial

properties of medicinal plants. J. Microbiol. Exp. 2014; 1(1):23-8. [Google Scholar]

Reynolds T, editor. Aloes: the genus Aloe. CRC press; 2004 Jan 23. pp.24-27. [Google Scholar]

Eshun K, He Q. A. vera: A valuable ingredient for the food, pharmaceutical and cosmetic industries: A review.

Crit Rev Food Sci Nutr. 2004;44(2):91-6. [PubMed] [Google Scholar]

Sánchez M, González-Burgos E, Iglesias I, GómezSerranillos MP. Pharmacological update properties of

A. vera and its major active constituents. Molecules. 2020;25(6):1324. [PubMed] [Google Scholar]

Yadeta AT. Food applications of Aloe species: A review. J Plant Sci Phytopathol. 2022;6:24-32. [Google Scholar]

Joseph B, Raj SJ. Pharmacognostic and phytochemical properties of Aloe vera linn an overview. Int J Pharm

Sci Rev Res. 2010 Jan;4(2):106-10. [Google Scholar]

Ahmed M, Hussain F. Chemical composition and biochemical activity of A. vera (A. barbadensis Miller)

leaves. IJCBS. 2013;3:29-33. [Google Scholar]

Abdissa N, Gohlke S, Frese M, Sewald N. Cytotoxic compounds from Aloe megalacantha. Molecules. 2017

Jul;22(7):1136. [PubMed] [Google Scholar]

López A, De Tangil MS, Vega-Orellana O, Ramírez AS, Rico M. Phenolic constituents, antioxidant and

preliminary anti mycoplasmic activities of leaf skin and flowers of A. vera (L.) Burm. f.(syn. A. barbadensis

Mill.) from the Canary Islands (Spain). Molecules. 2013;18(5):4942-54. [PubMed] [Google Scholar]

Akaberi M, Sobhani Z, Javadi B, Sahebkar A, Emami SA. Therapeutic effects of Aloe spp. in traditional and

modern medicine: A review. Biomed Pharmacother. 2016;84:759-72. [PubMed] [Google Scholar]

Moni SS, Sultan MH, Makeen HA, Madkhali OA, Bakkari MA, Alqahtani SS, Alshahrani S, Menachery SJ, Alam

MI, Elmobark ME, ur Rehman Z. Bioactive principles in exudate gel from the leaf of Aloe fleurentiniorum,

traditionally used as folkloric medicine by local people of Aridah and Fayfa mountains, Saudi Arabia. Arab J

Chem. 2021;14(11):103400. [Google Scholar]

Nalimu F, Oloro J, Kahwa I, Ogwang PE. Review on the phytochemistry and toxicological profiles of A. vera and A. ferox. Futur J Pharm Sci. 2021;7(1):145. [PubMed] [Google Scholar]

Andrea B, Dumitrița R, Florina C, Francisc D, Anastasia V, Socaci S, Adela P. Comparative analysis of some

bioactive compounds in leaves of different Aloe species. BMC Chem. 2020 Oct;14(1):67. [PubMed] [Google

Scholar]

Martínez-Sánchez A, López-Cañavate ME, GuiraoMartínez J, Roca MJ, Aguayo E. Aloe vera flowers, a

byproduct with great potential and wide application, depending on maturity stage. Foods. 2020 Oct;

(11):1542. [PubMed] [Google Scholar]

Jha A, Prakash D, Bisht D. A Phytochemical screening of the ethanolic extract of A. vera gel. IJSR.

;8(10):1543-44.

Mudin J, Etana D, Salah H, Dagne A, Milkyas E. Anthraquinones from the roots of Aloe gilbertii and

Aloe eleganis. J Natur Sci Res. 2018;8(1):1-7.

Ranghoo-Sanmukhiya M, Govinden-Soulange J, Lavergne C, Khoyratty S, Da Silva D, Frederich M, Kodja

H. Molecular biology, phytochemistry and bioactivity of three endemic Aloe species from Mauritius

and Re´union Islands. Phytochem Anal. 2010 NovDec;21(6):566-74. [PubMed] [Google Scholar]

Sbhatu DB, Berhe GG, Hndeya AG, Abdu A, Mulugeta A, Abraha HB, Weldemichael MY, Tekle HT, Gebru HA,

Taye MG, Kidanemariam HG. Hair washing formulations from Aloe elegans Todaro gel: The potential for making

hair shampoo. Adv Pharmacol Pharm Sci. 2020 Aug;2020:8835120. [PubMed] [Google Scholar]

Habtemariam M. Medhanie G. Screening of biologically active constituents from leaves of Aloe elegans and

their antimicrobial activities against clinical pathogens. Afr J Microbiol Res. 2017;11(8):366-71. [Google Scholar]

Brhane GH, Gopalakrishnan VK, Hagos Z, Hiruy M, Devaki K, Chaithanya KK. Phytochemical screening and

in vitro antioxidant activities of ethanolic gel extract of Aloe adigratana Reynolds. JPR. 2018;12(1):13-9.

[Google Scholar]

Sbhatu DB, Berhe GG, Hndeya AG, Abraha HB, Abdu A, Gebru HA, Taye MG, Mulugeta A, Weldemichael

MY, Tekle HT, Kidanemariam HG. Formulation and physicochemical evaluation of lab-based Aloe

adigratana Reynolds shampoos. Int J Anal Chem. 2020 Apr;2020:6290617. [PubMed] [Google Scholar]

Al-Oqail MM, El-Shaibany A, Al-Jassas E, Al-Sheddi ES, Al-Massarani SM, Farshori NN. In vitro anti-proliferative

activities of Aloe perryi flowers extract on human liver, colon, breast, lung, prostate and epithelial cancer cell

lines. Pak J Pharm Sci. 2016;29(2):723-9. [PubMed] [Google Scholar]

Amare GG, Meharie BG, Belayneh YM. Evaluation of antidiabetic activity of the leaf latex of Aloe

pulcherrima Gilbert and Sebsebe (Aloaceae). Evid Based Complement Alternat Med. 2020 Oct;2020:8899743.

[PubMed] [Google Scholar]

Muthii RZ, Mucunu MJ, Peter MM, Gitahi KS. Phytochemistry and toxicity studies of aqueous

and methanol extract of naturally growing and cultivated Aloe turkanensis. J Pharmacogn Phytochem.

;3:144-7. [Google Scholar]

Amoo SO, Aremu AO, Van Staden J. Unraveling the medicinal potential of South African Aloe species.

J Ethnopharmacol. 2014;153(1):19-41. [PubMed] [Google Scholar]

Hamman JH. Composition and applications of A. vera leaf gel. Molecules. 2008;13(8):1599-616. [PubMed]

[Google Scholar]

Geremedhin G, Bisrat D, Asres K. Isolation, characterization and in vivo antimalarial evaluation of

anthrones from the leaf latex of Aloe percrassa Todaro. J Nat Remedies. 2014;14(2):119-25. [Google Scholar]

Girma B, Bisrat D, Asres K. Antimalarial evaluation of the leaf latex of Aloe citrina and its major constituent.

Anc Sci Life. 2015 Jan-Mar;34(3):142-6. [PubMed] [Google Scholar]

Teka T, Bisrat D, Yeshak MY, Asres K. Antimalarial activity of the chemical constituents of the leaf latex of Aloe

pulcherrima Gilbert and Sebsebe. Molecules. 2016 Oct;21(11):1415. [PubMed] [Google Scholar]

Gemechu W, Bisrat D, Asres K. Antimalarial anthrone and chromone from the leaf latex of Aloe debrana

Chrstian, Ethiop. Pharm. J. 2014;30:1-9. [Google Scholar]

Tewabe Y, Assefa S. Antimalarial potential of the leaf exudate of Aloe macrocarpa Todaro and its major

constituents against Plasmodium berghei. Clin Exp Pharmacol. 2018;8(1):1-6. [Google Scholar]

Abdissa D, Geleta G, Bacha K, Abdissa N. Phytochemical investigation of Aloe pulcherrima roots and evaluation for its antibacterial and antiplasmodial activities. PLoS One. 2017 Mar;12(3):e0173882. [PubMed] [Google Scholar]

Mesfin A, Giday M, Animut A, Teklehaymanot T. Ethnobotanical study of antimalarial plants in Shinile

District, Somali Region, Ethiopia, and in vivo evaluation of selected ones against Plasmodium berghei. J

Ethnopharmacol. 2012 Jan;139(1):221-7. [PubMed] [Google Scholar]

Belayneh A, Demissew S, Bussa NF, Bisrat D. Ethno-medicinal and bio-cultural importance of Aloes from

south and east of the Great Rift Valley floristic regions of Ethiopia. Heliyon. 2020 Jun;6(6):e04344. [PubMed] [Google Scholar]

Abdissa N, Induli M, Fitzpatrick P, Alao JP, Sunnerhagen P, Landberg G, Yenesew A, Erdélyi M. Cytotoxic

quinones from the roots of Aloe dawei. Molecules. 2014 Mar;19(3):3264-73. [PubMed] [Google Scholar]

Oda BK, Erena BA. Aloes of Ethiopia: A review on uses and importance of Aloes in Ethiopia. Int J Plant Biol

Res. 2017;5(1):1059. [Google Scholar]

Bekele D, Petros B. Repellent effects of Aloe pirottae (Aloaceae) gel extract and Brassica nigra (Brassicaceae)

essential oil against the malaria vector, Anopheles arabiensis Patton (Diptera: Culicidae). Bioch & Anal

Biochem. 2017;6(3):1-7. [Google Scholar]

Bbosa GS, Kyegombe DB, Lubega A, Musisi N, OgwalOkeng J, Odyek O. Anti-Plasmodium falciparum

activity of Aloe dawei and Justicia betonica. AJPP. 2013;7(31):2258-63.

Mothana RA, Al-Musayeib NM, Matheeussen A, Cos P, Maes L. Assessment of the in vitro antiprotozoal and

cytotoxic potential of 20 selected medicinal plants from the island of Soqotra. Molecules. 2012;17(12):14349-

[PubMed] [Google Scholar]

Van Zyl RL, Viljoen AM. In vitro activity of Aloe extracts against Plasmodium falciparum. S Afr J Bot.

;68:106-10. [Google Scholar]

Adebayo NS, Motunrayo O. Evaluation of antiplasmodial potential of A. barbadensis and Allium sativum on

Plasmodium berghei-infected mice. J Med Plant Res. 2018;12(22):320-4. [Google Scholar]

Hintsa G, Sibhat GG, Karim A. Evaluation of antimalarial activity of the leaf latex and TLC isolates from Aloe

megalacantha Baker in Plasmodium berghei infected mice. Evid Based Complement Alternat Med. 2019

Apr;2019:6459498. [PubMed] [Google Scholar]

Organization for Economic Co-Operation and Development (OECD). OECD guidelines for the testing of

chemicals: Acute Oral Toxicity Up and Down-Procedure (UDP). 2008; pp. 1-27.

David AF, Philip JR, Simon IC, Reto B, Solomon N. Antimalarial drug discovery: efficacy models for

compound screening. Nature Rev. 2004 Jun;3:509-20. [PubMed] [Google Scholar]

Published
2022-09-30