Antimalarial Activity of the Crude Extract and Solvent Fractions of the Stem of Momordica Charantia in Plasmodium Berghei Infected Mice

Antimalarial activity of Momordica charantia

  • Akintola AO Department of Science Laboratory Technology, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • Kehinde BD Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • Ayoola PB Department of Science Laboratory Technology, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
  • Ibikunle GJ Department of Science Laboratory Technology, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • Oyewande EA Department of Science Laboratory Technology, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • Arotayo RA Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • Akwu Bala Peter Department of Anatomy, Faculty of Basic Medical Sciences, Kogi State University, Anyigba, Nigeria.
  • Bello MO Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
Keywords: Momordica charantia, Antimalarial, Solvent fractions, Plasmodium berghei, Crude Extract, Antiplasmodial

Abstract

Introduction: The emergence and rapid spread of multidrug-resistant Plasmodium strains, especially Plasmodium falciparum, has become a major concern for health professionals when it comes to malaria
prophylaxis and treatment, limiting medication options, necessitating the search for new antimalarial drugs derived from plants. In mice infected with Plasmodium berghei, the antimalarial function of Momordica
charantia stem crude methanolic extract and solvent fractions (hexane, ethyl acetate, and aqueous) was examined.

Method: Starting on the day the infection was identified, the extract and fractions were administered continuously for four days. Tween 80 (0.3 ml) was given to the control group, while the standard reference
drugs were chloroquine (10 mg/kgbw) and arteether (3 mg/kgbw) which were given for three days. The crude extract and fractions were tested for antimalarial activity in Plasmodium berghei infected mice using a
four-day suppressive test.

Result: At 500 mg/kgbw, the crude extract, hexane fraction, ethyl acetate fraction, and aqueous fraction developed 80.62, 90.09, 91.23, and 81.72 per cent chemosuppression respectively, on day 6 after infection.
Chemosuppression was 100% for chloroquine and 90% for arteether.

Conclusion: These results showed that the crude extract and solvent fractions of Momordica charantia stem had antiplasmodial efficacy comparable to the reference drug, indicating that the plant could be used as a natural antimalarial agent.

How to cite this article:
Antimalarial Activity of the Crude Extract and Solvent Fraction of the Stem of Momordica Charantia in Plasmodium Berghei Infected Mice. J Commun Dis. 2022;54(3):37-47.

DOI: https://doi.org/10.24321/0019.5138.202288

References

Anilakumar KR, Kumar GP, Ilaiyaraja N. Nutritional, pharmacological and medicinal properties of

Momordica charantia. Int J Food Sci Nutr. 2015;4(1):75-83. [Google Scholar]

Bagchi I. Food for thought: green ‘karela’ for red China. Times of India; 2005.

Vijayalakshma B, Kumar GS, Salimath PV. Effect of bitter gourd and spent turmeric on glycoconjugate

metabolism in steptozotocin-induced diabetic rats. J Diabetes Complications. 2009;23(1):71-6. [PubMed]

[Google Scholar]

Lim TK. Edible medicinal and non-medicinal plants. Dordrecht Springer; 2015. p. 331-2.

Bakare RI, Magbagbeola OA, Akinwande AI, Okunowo OW. Nutritional and chemical evaluation of Momordica

charantia. J Med Plant Res. 2010;4(21):2189-93. [Google Scholar]

Grossman ME, Mizuno NK, Dammen ML, Schuster T, Ray A, Cleary MP. Eleostearic acid inhibits breast cancer

proliferation by means of an oxidation-dependent mechanism. Cancer Prev Res. 2009;2(10):879-86.

[PubMed] [Google Scholar]

Liu XR, Deng ZY, Fan YW, Li J, Liu ZH. [Mineral elements analysis of Momordica charantia seeds by ICP-AES and

fatty acid profile identification of seed oil by GC-MS]. Guang Pu Xue Yu Guang Pu Fen Xi. 2010;30(8):2265-8.

Chinese. [PubMed] [Google Scholar]

Alam S, Asad M, Asdaq SM, Prasad VS. Antiulcer activity of methanolic extract of Momordica charantia L in

rats. J Ethnopharmacol. 2009;123(3):464-9. [PubMed] [Google Scholar]

Aljohi A, Matou-Nasri S, Ahmed N. Antiglycation and antioxidant properties of Momordica charantia. PLoS

One. 2016;11(8):e0159985. [PubMed] [Google Scholar]

Dandawate PR, Subramaniam D, Padhye SB, Anant S. Bitter melon: a panacea for inflammation and cancer.

Chin J Nat Med. 2016;14(2):81-100. [PubMed] [Google Scholar]

Govannini P, Howes MJ, Edwards SE. Medicinal plants used in the traditional management of diabetics

and its sequelae in Central America: a review. J Ethnopharmacol. 2016;184:58-71. [PubMed] [Google

Scholar]

Nhiem NX, Yen PH, Ngan NT, Quang TH, Kiem PV, Minh CV, Tai BH, Cuong NX, Song SB, Kim YH. Inhibition

of nuclear transcription factor- κB and activation of peroxisome proliferator-activated receptor in HepG2

cells by cucurbitane-type triterpene glycosides from Momordica charantia. J Med Food. 2012;15(4):369-77.

[PubMed] [Google Scholar]

Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger

JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists

of peroxisome proliferator-activated receptor gamma (PRARY): a review. Biochem Pharmacol. 2014;92(1):73-

[PubMed] [Google Scholar]

Perumal V, Khoo WC, Abdul-Hamid A, Ismail A, Saari K, Murugesu S, Abbas F, Ismail IS, Lajis NH, Mushtaq

MY, Khatib A. Evaluation of antidiabetic properties of Momordica charantia in streptozotocin induced

diabetic rats using metabolomics approach. Int Food Res J. 2015;22(3):1298-306. [Google Scholar]

Poovita S, Parani M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement Altern Med. 2016;16(Suppl 1):185. [PubMed] [Google Scholar]

Yineger H, Yewhalaw D. Traditional medicinal plant knowledge and use by local healers in Sekoru district,

Jimma Zone, Southwestern Ethiopia. J Ethnobiol Ethnomed. 2007;3:24-30. [PubMed] [Google Scholar]

Duan ZZ, Zhon XL, Li YH, Zang F, Li FY, Su-Hua Q. Protection of Momordica charantia polysaccharide

against intracerebral haemorrhage-induced brain injury through JNK3 signaling pathway. J Recept Signal

Transduct Res. 2015;35(6):523-9. [PubMed] [Google Scholar]

Gong J, Sun F, Li Y, Zhou X, Duan Z, Duan F, Zhao L, Chen H, Qi S, Shen J. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated C-Jun N-terminal kinase 3 signaling pathway. Neuropharmacology. 2015;91:123-34. [PubMed]

[Google Scholar]

Brennan VC, Wang CM, Yang WH. Bitter melon (Momordica charantia) extract suppresses

adrenocortical cancer cell proliferation through modulation of apoptotic pathway, steroidogenesis,

and insulin-like growth factor type 1 receptor/RAC-α serine/threonine-protein kinase signaling. J Med Food.

;15(4):325-34. [PubMed] [Google Scholar]

Fang EF, Zhang CZ, Wong JH, Shen JY, Li CH, Ng TB. The MAP30 protein from bitter gourd (Momordica

charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Lett. 2012;324(1):66-

[PubMed] [Google Scholar]

White NJ. Qinghaosu (artemisinin): the price of success. Science. 2008;320(5874):330-4. [PubMed] [Google

Scholar]

Nagarani G, Abirami A, Siddhuraju P. A comparative study on antioxidant potentials, inhibitory activities

against key enzymes related to metabolic syndrome, and anti-inflammatory activity of leaf extract from

different Momordica species. Food Sci Human Welln. 2014;3(1):36-46. [Google Scholar]

Raish M. Momordica charantia polysaccharides ameliorate oxidative stress hyperlipidemia,

inflammation and apoptosis during myocardial infarction by inhibiting the NF-K B signaling pathway.

Int J Biol Macromol. 2017;97:544-51. [PubMed] [Google Scholar]

Rammal H, Bouayed J, Hijazi A, Ezzedine M, Soulimai R. Scavenger capacity of Momordica charantia for

reactive oxygen species. J Nat Prod. 2012;5:54-9. [Google Scholar]

Sagor AT, Chowdhury MR, Tabassum N, Hossain H, Rahman M, and Alam A. Supplementation of fresh

ucche (Momordica charantia L. var. muricata Willd) prevented oxidative stress, fibrosis and hepatic damage

in CCl4 treated rats. BMC Complement Altern Med. 2015;15(1):115. [PubMed] [Google Scholar]

Shan B, Xie JH, Zhu JH, Peng Y. Ethanol modified supercritical carbon dioxide extraction of flavonoids

from Momordica charantia L and its antioxidant activity. Food Bioprod Proc. 2012;90(3):579-87. [Google

Scholar]

Bao B, Chen YG, Zhang L, Xu YL, Wang X, Liu J, Qu W. Momordica charantia (bitter melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues.

PLoS One. 2013;8(12):9-10. [PubMed] [Google Scholar]

Liaw CC, Huang HC, Hsiao PC, Zhang LJ, Lin ZH, Hwang SY, Hsu FL, Kuo YH. 5β,19-epoxycucurbitane

triterpenoids from Mormordica charantia and their anti-inflammatory and cytotoxic activity. Planta Med.

;81(1):62-70. [PubMed] [Google Scholar]

Birla D. Evaluation of antibacterial activity of Momordica charantia. Pharma Tutor. 2016;4(11):37-40. [Google

Scholar]

Saengsai J, Kongtunjanphuk S, Yoswatthana N, Kummalue T, Jiratchariyakul W. Antibacterial and

antiproliferative activities of plumericin, an iridoid isolated from Momordica charantia vine. Evid Based

Complement Alternat Med. 2015;2015:823178. [PubMed] [Google Scholar]

Shoba FG, Babu VA, Parimala M, Sathya J. In vitro evaluation of antimicrobial activity of Moringa oleifera

and Momordica charantia seeds. Int J Pharm Sci Res. 2014;5(5):1988-93.

Dailborca VC, Dumitrascu V, Popescu R, Cimporescu A, Viad CS, Flangea C, Grecu DS, Vagvolgyi C, Papp T,

Horhat F. Gas-chromatography mass spectrometry evidences for new chemical insights of Momordica

charantia. Rev Chim. 2015;66(1):1914-20. [Google Scholar]

Ma L, Yu AH, Sun LL, Gao W, Zhang MM, Su YL, Liu H, Ji T. Two new bidesmoside triterpenoid saponins

from the seeds of Momordica charantia L. Molecules. 2014;19(2):2238-46. [PubMed] [Google Scholar]

Wang X, Sun W, Cao J, Qu H, Bi X, Zhao Y. Structures of new triterpenoids and cytotoxicity activities of the

isolated major compounds from the fruit of Momordica charantia L. J Agric Food Chem. 2012;60(15):3927-33.

[PubMed] [Google Scholar]

Yoshime LT, de Melo IL, Sattler JA, de Carvalho EB, Mancini-Filho J. Bitter gourd (Momordica charantia L.)

seed oil as naturally rich source of bioactive compounds for nutraceutical purposes. Nutire. 2016;41(1):12.

[Google Scholar]

Mada SB, Garba A, Mohammhed HA, Muhammad A, Olagunju A, Muhammad AB. Antimicrobial activity

and phytochemical screening of aqueous and ethanol extracts of Momordica charantia L. leaves. J Med Plants

Res. 2013;6(4):566-73. [Google Scholar]

Oragwa LN, Efiom OO, Okuwte SK. Phytochemicals, anti-microbial and free radical scavenging activities of

Momordica charantia Linn (Palisota Reichb) seeds. Afr J Pure Appl Chem. 2013;7(12):405-9. [Google Scholar]

Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez

AD. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379(9814):413-31.

[PubMed] [Google Scholar]39. Sinha S, Medhi B, Sehgal R. Challenges of drug-resistant malaria. Parasite. 2014;21:61. [PubMed] [Google Scholar]

O’Brien C, Henrich PP, Passi N, Fidock DA. Recent clinical and molecular insights into emerging artemisinin

resistance in Plasmodium falciparum. Curr Opin Infect Dis. 2011;24(6):570-7. [PubMed] [Google Scholar]

Fairhurst RM, Nayyar GM, Breman JG, Hallet R, Vennerstrom JL, Duong S, Ringwald P, Wellems TE,

Plowe CV, Dondorp AM. Artemisinin-resistant malaria: research challenges, opportunities, and public health

implications. Am J Trop Med Hyg. 2012;87(2):231-41. [PubMed] [Google Scholar]

White NJ. Qinghaosu (artemisinin): the price of success. Science. 2008;320(5874):330-4. [PubMed] [Google

Scholar]

de Ridder S, van der Kooy F, Verpoorte R. Artemisia annua as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol. 2008;120(3):302-14. [PubMed] [Google Scholar]

Oluwatosin A, Tolulope A, Ayokulehin K, Patricia O, Aderemi K, Catherine F, Olusegun A. Antimalarial

potential of kolaviron, a biflavoniod from Garcinia kola seeds against Plasmodium berghei infection in

Swiss albino mice. Asian Pac J Trop Med. 2014;7(2):97-104. [PubMed] [Google Scholar]

Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity.

J Ethnopharmacol. 2000;71(1-2):23-43. [PubMed] [Google Scholar]

Adeyi OE, Akinloye OA, Lasisi AA. Effects of Momordica charantia methanolic leaf extract on hepatic and

splenic histopathology and some biochemical indices in Plasmodium berghei infected mice. Biokemisitri.

;28(2):52-60.

Christy AO, Mojisola CO, Taiwo EO Ola OO. The antimalaria effect of Momordica charantia L and

Mirabilis jalapa leaf extracts using animal model. J Med Plants Res. 2016;10(24):344-50. [Google Scholar]

Farida Y, Tanbunan RM. Analysis of some plants extracts used as antimalarial in Sei Kepayang. North Sumatera, Indonesia. Asian J Chem. 2017;29(3):592-4.

National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory

Animals. Guide for the care and use of laboratory animals. 8th ed. Washington (DC): National Academies

Press (US); 2011. [PubMed].

Awe IS, Sodipo OA. Purification of saponins of root of Blighia sapida. Niger J Biochem Mol Biol.

;16:20S-204S.

Sofowora A. Medicinal plants and traditional medicine in Africa. 2nd ed. Nigeria: Spectrum Books Limited

(Publisher); 1993. 134-56 p.

Trease GE, Evans WC. A textbook of pharmacognosy. 13th ed. London: Baillere-Tindall Ltd.; 1989. p. 19-21.

Girden, E. R. (1992). ANOVA: Repeated Measures. Newbury Park, CA: Sage. https://doi.org/10.4135/9781412983419.

Sheldom JW, Balick MJ, Laird SA, Milne Jr GM. Medicinal plants: can utilization and conservation coexist? New

York Botanical Garden Press; 1997. 104 p. [Google Scholar]

Gabhe SY, Tatke PA, Khan TA. Evaluation of the immunomodulatory activity of methanol extract

of Ficus benghalensis roots in rats. Indian J Med. 2006;38(4):271-5. [Google Scholar]

Premanathan M, Rajendran S, Ramanathan T, Kathiresan K, Nakashima H, Yamamoto N. A survey

of some Indian medicinal plants for anti-human immunodeficiency virus (HIV) activity. Indian J Med

Res. 2000;112:73-7. [PubMed] [Google Scholar]

Yang SJ, Choi JM, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY. Preventive effects of bitter melon

(Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NFκB and JNK pathways in high-fat-fed OLETF rats. J Nutr Biochem. 2015;26(3):234-40. [PubMed] [Google

Scholar]

Kyle RA, Shampe MA. Discoverers of quinine. JAMA. 1974;229(4):462. [PubMed] [Google Scholar]

Verpoorte R, Kim HK, Choi YH. Plants as source for medicines: new perspectives. In: Bogers RJ, Craker

LE, Lange D, editors. Medicinal and aromatic plants. Netherland: Springer, 2006. p. 261-73. [Google Scholar]

Hsu E. Reflections on the ‘discovery’ of the antimalarial qinghao. Br J Clin Pharmacol. 2006;61(6):666-70.

[PubMed] [Google Scholar]

Trease GE, Evans WC. A textbook of pharmacognosy. 13th ed. London: Baillere-Tindall Ltd.; 1989. p. 19-21.

Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for

compound screening. Nat Rev Drug Discov. 2004;3:509-20. [PubMed] [Google Scholar]

Enwuru NV, Ogbonnia SO, Nkemehule F, ENwuru CA, Tolani O. Evaluation of antibacterial activity and acute

toxicity of the hydroethanolic extract of Stachytarpheta angustifolia (Mill) Vah. Afr J Biotech. 2008;7(11):1740-

[Google Scholar]

Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ

Health Perspect. 2001;109:69-75. [PubMed] [Google Scholar]

Lai PK, Roy J. Antimicrobial and chemopreventive properties of herbs and spices. Curr Med Chem.

;11(11):1451-60. [PubMed] [Google Scholar]

Francois G, Passreiter CM, Woerdenbag HJ, LooverenMV. Antiplasmodial activities and cytotoxic effects of

aqueous extracts and sesquiterpene lactones from Neurolaena lobata. Planta Med. 1996;62(2):126-9.

[PubMed] [Google Scholar]

Phillipson JD, Wright CW. Antiprotozoal agents from plant sources. Planta Med. 1991;57:553-9. [PubMed]

[Google Scholar]

Monbrison F, Maitrejean M, Latour C, Bugnazet F, Peyron F, Barron D, Picot S. In vitro antimalarial

activity of flavonoid derivatives dehydrosilybin and 8-(1;1)-DMA-kaempferide. Acta Trop. 2006;97(1):102-

[PubMed] [Google Scholar]

Tilley L, Straimer J, Gnadig NF, Ralph SA, Fidock DA. Artermisinin action and resitance in Plasmodium

falciparum. Trends Parasitol. 2016;32(9):682-96. [PubMed] [Google Scholar]

Titanji VP, Zofou D, Ngemenya MN. The antimalarial potential of medicinal plants used for the treatment

of malaria in Cameroonian folk medicine. Afr J Tradit Complement Altern Med. 2008;5(3):302-21. [PubMed]

[Google Scholar]

Liu KC, Yang SL, Roberts MF, Elford BC, Phillipson JD. Antimalaria activity of Artemisia annua flavonoids

from whole plants and cell cultures. Plant Cell Rep. 1992;11(12):637-40. [PubMed] [Google Scholar]

Published
2022-09-30