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A complete time-dependent carrier-borne epidemic model in the 
presence of more than one carrier is developed in this article. Also, 
the probability of survival of susceptibles for a random infectious 
time period is derived. Moreover, the maximum likelihood estimation 
(MLE) of relative infection rate is obtained which is found to be 
more efficient than the one obtained by Roy Sunders & Richard J 
Kryscio in 1976. The proposed complete time-dependent carrier-
borne epidemic model gives a better explanation than the stochastic 
model suggested by Wiess in 1965.
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Introduction
Studies on epidemic models have been going on for over 
100 years and multitudes of mathematical (deterministic) 
and statistical (stochastic) epidemic models have been 
developed which mainly serve the purpose of predictions 
related to the spread of different kinds of epidemics. In 
this article, we are focusing on one of the most important 
classes of epidemic models, called the carrier-borne 
epidemic model. Carrier-borne diseases are contagious 
diseases caused by pathogens, like viruses, protozoa 
and bacteria, which are communicated by humans, or 
animal agents known as carriers. Basically, carriers are 
infectives without visible symptoms of the diseases and 
play a very significant role in the spread of an epidemic, 
for example, pathogens such as hepatitis B virus, herpes 
simplex virus, and HIV are frequently transmitted by 
asymptomatic human carriers. 

In 1991, Ross published a report on the prevention and 
the transmission of malaria.1 AJ Lotka set up a system 
of differential equations to represent the presumptive 
course of events in the development of an endemic in 
which recovery is accompanied by acquired immunity 
for malaria in 1923.2 GS Wilson discussed measles 
immunisation at an international conference in 1962.3The 
first work on the stochastic epidemic model is believed 
to be published by McKendrick in 1926.4 However, 
it went unnoticed in the academic community for a 
very long time, till MS Bartlett extended the work of 
McKendrick in the year 1946.5 The foundations of carrier-
borne epidemic models were laid down by GH Weiss 
through his pioneer work published in the year 1965.6 He 
developed the overall deterministic formulation of the 
carrier-borne epidemic model and presented a stochastic 
framework for estimating the ultimate size of a carrier-
borne epidemic using the concept of Markov process. 
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To define his model, Weiss assumed that all carriers 
can be identified and isolated using the available public 
health measures. Also, Weiss considered an epidemic 
in a closed population where infections are spread by 
initially introduced carriers and no new carriers in the 
form of infectives are introduced in the population.

This simple model of Weiss has been extended further 
by many authors, under different assumptions regarding 
the carriers and the type of population. Downton 7,8 

introduced a new stochastic epidemic model which 
assumed that apart from the initially introduced carriers, 
new carriers can be created from the susceptibles in the 
population. In general, this is a more realistic scenario for 
a carrier-borne epidemic, and, in that sense, Downton’s 
model can be considered as a generalisation over Weiss’s 
model. Severo9 further extended the model given by 
Downton by allowing the removal of both susceptibles 
and infectives from the population. He also provided 
a recursive procedure to estimate state probabilities 
at any given time, which could be further utilised to 
obtain maximum likelihood estimates of the model 
parameters. Further work in this model was done by 
Daniels,10 who provided an exact relation between 
the probability that a specific number of susceptibles 
remain uninfected at the end of an epidemic, and the 
probability that in another epidemic starting with the 
total number of susceptibles equal to the total number 
of infected in the previous epidemic, all susceptibles 
will get infected. Further extension of the model given 
by Weiss 6 was provided by Becker.11 He generalised the 
carrier-borne epidemic model to allow for variation in 
the susceptibility of the individuals and for variation in 
the infective capacity of the carriers. Jerwood12 proposed 
evaluation of the cost of a carrier-borne epidemic as a 
sum of two components - total area generated by the 
trajectory of the carriers, and total cost of isolating 
susceptibles and identified carriers. He used the model 
devised by Downton (1967)8 to derive the components 
of the cost function. As another important extension 
of Weiss’s model, Routleff13 developed a carrier-borne 
epidemic model. In this model, along with the number 
of carriers present, carrier removal is also dependent on 
the number of affected susceptibles. This was because 
a search team for carriers will not be active till new 
infections are reported from a region. Lefevre C and 
Malice MP (1988)14 compared the progression of the 
disease in the case of heterogeneous and homogeneous 
populations in order to investigate the impact of 
differences in infection and removal rates on Weiss-
type carrier-borne epidemic models. Clancy D (1966)15 
gave a carrier-borne epidemic model incorporating 
population mobility. Dietz K (1966)16 explained how only 

the carriers are responsible for spread of the disease. Ball 
F (1985)17 defined deterministic and stochastic models of 
epidemics with several kinds of susceptibles. Also, Ball 
F and Clancy D revealed how to get the final outcome 
and temporal solution of a carrier-borne epidemic model 
in 1985.18 Gani gave the general stochastic model of 
epidemic in 1967.19 He also   defined an extension of the 
classical carrier-borne epidemic model for two stages 
of HIV infection in 1991.20 Picard and Lefevre21 further 
generalised this model in 1991 for multiple stages of 
infection. Gani used a classical Markov chain approach, 
whereas Picard and Lefevre used a martingale approach, 
to obtain the joint probability function of the numbers of 
susceptibles, infectives, and carriers present at any time 
in the population. W Henderson (1979)22 presented an 
alternative approach to derive a general class of results 
in carrier-borne epidemic theory. R Watson (1980)23 used 
random time scale transformations to obtain equations 
and to derive asymptotic approximation for the size 
distribution.

In this article, we have proposed a complete time-
dependent probabilistic formulation of the existing 
carrier-borne epidemic model given by Weiss, 6 as opposed 
to its widely used stochastic process formulation. The 
infectious time period has been treated as a random 
variable having a probability distribution. Using the 
results of simple death process of Bharucha Reid (1960),24 
the expression for conditional probability of survival of 
k out of m susceptibles, in the presence of n carriers, 
after a given infectious time period has been derived. 
The expression for the probability that a population of m 
susceptibles are reduced to k survivors at the termination 
of an epidemic initiated by n carriers is also derived 
and the result matches that of Weiss.6 Further, we have 
obtained the method of moment estimator (MME) and 
maximum likelihood estimator (MLE) of the relative 
infection rate. Saunders and Kryscio25 also provided MLE 
of the relative infection rate corresponding to Weiss’s 
carrier-borne epidemic model. Weiss27 and Saunders 
and Kryscio25 applied their results to the data from a 
typhoid epidemic in Zermatt, Switzerland. To compare 
the performance of our estimates with that of Saunders 
and Kryscio,25 we have computed the MMEs and MLEs 
of the relative infection rate for the same data, at three 
different values of n. Standard errors of the MLEs have also 
been computed to assess the efficiency of these estimates 
as compared to those of Saunders and Kryscio. 25 Values of 
conditional probabilities computed at different time points, 
for different combinations of a number of susceptibles and 
number of carriers, are presented in tables and figures 
to provide further insight into the behaviour of the time-
dependent carrier-borne epidemic model.
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Development of Complete Time-Dependent 
Carrier-borne  Epidemic Model

Suppose that an epidemic is initiated by n carriers (where 
n ≥ 1) in the presence of m susceptibles. It is assumed 
that the epidemic can terminate in one of the two ways 
- either all carriers are eliminated or the entire population 
gets infected from the disease. Let πk|τ (m, n) to be the 
probability of survival of k susceptibles out of m susceptibles 
during infectious time period τ. The πk|τ (m, n) satisfies 
the equation.

, where α is the infection rate

                                                  

Which is nothing but a simple death process with the 
following solution.

   (1)

Further, we define relative infection rate σ as

,where β is the recovery/ removal rate   (2)

Now, to estimate the unknown parameters, we define 
the following random variables.

K: A random variable representing the number of 
susceptibles (a discrete random variable).

T: A random variable representing the infectious time 
period (a continuous random variable).

The infectious time period T is assumed to follow 
gamma distribution with parameters ’n’ (shape) and 
β (scale). For computational convenience, let us consider 
the transformed infectious time period as , so 
that the transformed infectious time period T follows 
gamma(n,1) with the following probability density 
function.

; Where t > 0    (3)

Let  be the probability that k out of m 
susceptibles survive after the infectious time period t, 
when the epidemic starts with n carriers. Using 
equations (1) and (3), is obtained as the joint 
distribution of K and T as follows.

  (4)

Where t > 0 and k = 0, 1, 2, ;
Putting n = 1 in equation (4), is given as:

   (5)

Where t > 0 and k = 0, 1, 2, ;

For a particular case when σ = 1, the value of 

is given as:

   (6)

Where t > 0 and k = 0, 1, 2, ;
Probability of Ultimate Number of 
Survivors
Let  be the probability that k out of m susceptibles 
ultimately survive by the end of an epidemic initiated by 
n carriers. It can be obtained as the marginal distribution 
of K as follows.

    (7)

Where k = 0, 1, 2, ;

Note: The above result obtained through our probabilistic 
approach is the same as that derived by Weiss27 
from probability generating functions using a stochastic 
process approach.

Substituting n = 1 in equation (7), the expression for 
comes out to be:

   (8)

As a particular case, when the infection rate of susceptibles 
and the rate of removal of carriers are equal, i.e., the relative 
infection rate σ = 1, we get.

       (9)

Further, substituting n = 2 in equation (7), the expression 
for πk(m, 2) comes out as:

 

  (10)

Expressions of  for n > 2 can also be derived from 
equation (7), or can be written in terms of polygamma 
functions tabulated by Davis.26 As a demonstration, 
values of and  at different values of k and 
t, and of , ,  and , at different 
values of k, are computed and provided in Tables 3, 4, 
5, 6,7 and 8 respectively for σ = 0.2. 

Further, graphs are plotted for these tabulated values to 
highlight the additional information provided by the plots 
of time-dependent survival probabilities as compared to 
the plots of only ultimate survival probabilities (Figures 
1-6).

Expectation and Variance of K
 (11)

 

  (12)

  (13)
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It can be observed that expectation and variance of K 
could be easily obtained by using our proposed method 
as compared to the method suggested by Wiess.

Estimation of σ (Relative Infection Rate)
Moment Estimator of σ

Let K 1; K2; . . . ; KN be the random samples of susceptibles 
for various time periods from the distribution . 
By using the expression for the expectation of K given 
in equation (11) and equating it to the sample mean K 
we have:

; which gives       (14)

Maximum Likelihood Estimator of σ 

Using the conditional distribution of K for given T = t, 
i.e., , the m.l.e. of σ is obtained as:

 which implies ; where t>0 (15)

If we replace t by its expected value n (i.e. E(T) = n, in the 
presence of n carriers) then we get a specific m.l.e. of σ as:                     

     (16)

would be an unbiased estimator of σ (it is 
not possible to prove theoretically but we can prove 
numerically) and the variance of is:

  (17)

Where N is the number of sample observations on 
susceptibles from various time periods.

Data Analysis
Check for efficiency of 

We have applied our result on the data of typhoid 
epidemic in Zermatt, in which out of 1500 susceptibles 
approximately 100 cases of typhoid were reported.6,25

Our estimate , the estimate of Roy 
Sunders and Richard J Kryscio25 and the estimate 

of Weiss6 for the data of typhoid epidemic in 
Zermatt are given below in Table 1.

Table 1.Estimate of Relative Infection Rate (σ) 

n                             1 2 3
0.071 0.035 0.023
0.070 0.034 0.023
0.067 0.033 0.022

Table 2.Standard Error of Relative 
Infection Rate (σ) 

n 1 2 3
s.e.( ) 0.037 0.019 0.012
s.e.( ) 0.067 0.023 0.013

Hence, from Table 2 it can be observed that is 
more efficient as compared to .

Finding Probability of k Survivors with the 
help of  and 

In Tables 3, 4, 5, 6, 7 and 8, the values of  
and , are 

presented for σ = 0.2.
Table 3.Probability of k Survivors for Weekly 

Time Periods when n = 1, m 
= 5 and σ = 0.2

0 – 1 1 – 2 2 – 3 3 – 4 4 – 5 
k = 0 0.0000047 0.00026 0.00077 0.00098 0.00082
k = 1 0.00023 0.00373 0.00597 0.00815 0.00280
k = 2 0.000428 0.02132 0.01840 0.00950 0.00384
k = 3 0.04069 0.06094 0.02836 0.00937 0.00263
k = 4 0.19345 0.08709 0.02186 0.00462 0.00090
k = 5 0.36788 0.04979 0.00673 0.00091 0.00012

From Table 1 above, we observed that the numerical 
value of is very close to as compared 
to .

Table 4.Probability of k Survivors for Weekly 
Time Periods when n = 2, m = 5 and σ = 0.2

0 – 1 1 – 2 2 – 3 3 – 4 4 – 5
k = 0 0.0000023 0.00039 0.00194 0.00342 0.00368
k = 1 0.000123 0.00559 0.01492 0.01685 0.01261
k = 2 0.00214 0.03198 0.04599 0.03325 0.01727
k = 3 0.02035 0.09141 0.07089 0.03279 0.01183
k = 4 0.09673 0.13064 0.05464 0.01618 0.00405
k = 5 0.18394 0.07468 0.01684 0.00319 0.00056

Table 5.Probability of k Survivors when n = 1, m 
= 5 and σ = 0.2

k 0 1 2 3 4 5
0.004 0.020 0.059 0.077 0.278 0.500

Table 6.Probability of k Survivors when n = 2, m 
= 5 and σ = 0.2

k 0 1 2 3 4 5
0.017 0.064 0.143 0.129 0.293 0.250

Table 7.Probability of k Survivors when n = 1, m = 10 and σ = 0.2

k 0 1 2 3 4 5 6 7 8 9 10
0.00033 0.002 0.005 0.012 0.023 0.042 0.077 0.110 0.165 0.238 0.333

For the same data, we now check the efficiency of our 
estimate  with  of Roy Sunders and Richard 
J Kryscio,25 as shown below in Table 2.
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From the above tables, it is clear that as the time 
period and number of carriers increase, the chance 
of survival of susceptibles decreases. The graphical 
representation of  and  below also 
supports our results.

Graphical Representation of  and 
for Table 1 to Table 8

Discussion
We have seen that the complete time-dependent 
theory gives a better explanation of the carrier-borne 

Table 8.Probability of k Survivors when n = 2, m = 10 and σ = 0.2

k 0 1 2 3 4 5 6 7 8 9 10
0.002 0.011 0.022 0.043 0.069 0.103 0.150 0.164 0.177 0.164 0.111

Figure 1.Graphical Representation of
 πk(5,n) for σ = 0.2

 Figure 2.Graphical Representation of 
πk(10,n) for σ = 0.2

Figure 3.Graphical Representation of 
πk,t (5,1) for σ = 0.2

Figure 4.Graphical Representation of 
πk,t (5,2) for  σ = 0.2

Figure 5.Graphical Representation of πk,t(5,1) vs 
πk(5,1) for σ = 0.2

Figure 6.Graphical Representation of πk,t(5,2) vs 
πk(5,2) for σ = 0.2



34
Grover G et al.
J. Commun. Dis. 2021; 53(4)

ISSN: 0019-5138 
DOI: https://doi.org/10.24321/0019.5138.202171

epidemic model than the stochastic theory. Also, it 
is observed that the infectious time period and the 
number of carriers play a significant role in the survival 
of susceptibles. From Figures 3 and 4, it is clear that 
the probability of survival of susceptibles decreases 
as the number of infectious time period increases. 
The probability to survive an infectious time period 
is smaller than that of the previous infectious time 
period. We can conclude from Figures 5 and 6 that 
the probability of survival of susceptibles based on 
stochastic theory is similar in nature to the probability 
survival of susceptibles at the first infectious time 
period (i.e., week 1) of time-dependent theory. The 
maximum likelihood estimate of σ for time-dependent 
theory is easy to define but for stochastic theory, it is 
rather difficult. The MLE of σ based on time-dependent 
theory is unbiased and more efficient than MLE of σ 
based on stochastic theory suggested by Roy Sunders 
and Richard J Kryscio.25

Conclusion
We can conclude that the complete time-dependent 
theory explains  the actual scenario of the carrier-
borne epidemic better than the stochastic theory. 
Also, it is observed that an increase in infectious time 
period will increase the number of carriers  which 
plays a significant role in spreading infection among 
the susceptibles without  showing the symptoms of 
the disease.
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