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Estimation of Quality Adjusted Life Years (QALYs) is pivotal towards 
economic evaluation and cost-effectiveness analysis of medical 
interventions. Most of the methods developed till date for calculating 
QALYs are based on multi-state structures where fixed utility values are 
assigned to each disease state and total QALYs are calculated on the basis 
of total lengths of stay in each state. In this article, we have presented a 
new proxy approach to define utility as a function of risk factors, which 
can be used to calculate QALY without defining discrete disease states. 
Retrospective survival data of HIV/ AIDS patients undergoing treatment 
at the Antiretroviral Therapy (ART) center of Ram Manohar Lohia 
hospital in New Delhi has been used to demonstrate implementation 
of the proposed methodology. Joint modelling, with a mixed effect 
longitudinal sub-model for CD4 count and a Cox proportional hazard 
survival sub-model with time dependent covariates, has been used to 
estimate risks associated with different factors and covariates. Using 
the proxy utilities, QALYs have been calculated for each individual for 
their lifetime time horizon, defined as the time since their registration 
in the ART till death or till their age reach average life expectancy of 
HIV/ AIDS patients in India. QALY results are consistent with findings of 
conventional cost-effectiveness studies on ART for HIV/ AIDS patients 
in India.

Keywords: Cost-Effectiveness Analysis, Health Economics, Joint 
Modelling, HIV/ AIDS, Utility Function

Introduction
Cost-Effectiveness Analysis (CEA) is an important health 
economic technique to evaluate economic feasibility of 
treatment regimens for desired medical outcomes. CEA 
is hugely dependent on the calculation of gain in Quality 
Adjusted Life Years (QALYs) in patients after administration 
of the treatment regime under review. Quality adjustment 

is achieved by assigning different utility values to 
different states of the disease on the basis of physical and 
psychological appraisal of the patients.

Most of the research works done on CEA till date have used 
either markov models or multi-state models to map disease 
progression in terms of transitions between pre-defined 
states. Survival models are used to fit the survival data and 
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hence, to estimate the transition probabilities between 
different states. The estimated transition probabilities 
are then used to estimate expected Total Length of Stay 
(TLOS) in each state. Discrete utility values are assigned to 
each state and these utility values are used as weights to 
calculate total expected QALYs. Briggs A and Sculpher M1 
laid down the fundamental structure of applying markov 
models in CEA. Parametric survival models have been 
most widely used for estimating transition probabilities 
between different disease states; see for instance.2-5 Cox 
Proportional Hazards (PH) models have been used in the 
multi-state set up for estimating the transition probabilities 
by Mihaylova B et al.,6 and Malehi AS et al.7 among others. 
Bayesian parametric models have also been presented as 
alternatives for fitting multi-state transition models and 
hence, for estimating the gain in QALYs.8,9

Although the methods based on multi state models are 
uncomplicated and easy to comprehend, they are bound 
by certain theoretical restrictions. Defining few specific 
disease states can undermine the dynamic nature of disease 
progression within each state. For example, suppose 
we are carrying out CEA of Antiretroviral Therapy (ART) 
intervention for HIV/ AIDS patients using a multi-state 
model. The states of HIV/ AIDS patients are defined on the 
basis of pre specified cut off points of CD4 cell counts.10,11 
Suppose that state one is marked by a CD4 cell count of 
>500, and state two is marked by a CD4 cell count in the 
range 351-500. This implies that a patient with CD4 cell 
count of 499 will be classified in the state two, while a 
patient with CD4 count of 501 will be considered to be in 
state one. That is, a patient with CD4 cell count of 501 will 
be assigned much higher utility value than that of a patient 
having a CD4 cell count of 499. Also, although probably not 
significantly, but in the range of 351-500, different levels 
of CD4 cell count can be associated with different levels of 
health status. So, our assumption of assigning static utility 
values to the patients’ health quality during the course of 
their stay in any particular state is also questionable. This 
simple example testifies to the ignorance of the dynamic 
nature and subtlety of disease progression in multi-state 
models for certain diseases or infections.

Common methods of obtaining health utility values, like 
EQ-5D and SF-6D, are based on questionnaires containing 
basic questions about physical and psychological status 
of the patients which are generally filled by the patients 
themselves. Parameters like mobility, self-care, usual 
activities, pain/discomfort, anxiety/depression, social 
functioning etc. form the basis of devising scores or 
measures based on the feedbacks.9,12,13 Standardized utilities 
based on such methods can sometimes be misleading 
because of their inability to encompass individual level 
variation in the physical and mental status of patients in 
any particular state of a disease. Variability in the physical 

and mental response of individual patients in any disease 
state can be either caused by associated factors like 
smoking, drinking, type of work, socio-economic status, age, 
existence of other unrelated medical conditions, pollution 
level in the region etc., or by practically unaccountable or 
immeasurable factors like personal demeanour, will power, 
family support and love, physical strength prior to outset 
of the disease etc. At the same time, convincing patients 
to fill out the questionnaires can also become challenging 
in case of certain diseases or for certain states of the 
diseases, especially when the disease under consideration 
is unfortunately perceived as a social stigma, like HIV/
AIDS, Leprosy, Dementia and many more. Thus, these 
standardized methods of calculating health utility values 
have three major limitations; a. assumption of fixed utility 
throughout the course of stay in a state of a disease, b. no 
account for patient to patient variability in health utility 
in any state of the disease and c. difficulty in reaching out 
to the patients to respond to the questionnaires when 
the patients are reluctant to be identified in public, or in 
situations when patients’ judgment cannot be trusted. 

In this paper our primary objective is to present an alternative 
method for calculating QALY without using the multi state 
model framework. The proposed method will be particularly 
useful in cases where the event time of interest is observed 
during follow- up; along with longitudinal covariates. The 
method involves using joint modelling approach to fit a 
Cox PH sub-model for the event process and a linear mixed 
effects sub-model for the associated repeated measures 
of the covariate (or biomarker). The fitted model is then 
used to project the longitudinal trajectory of the covariate 
for each censored case till the lifetime time horizon of the 
study. Utility is defined as a function of the covariate(s) with 
their weights calculated on the basis of the corresponding 
effects estimated through joint modelling. These utilities 
are case specific, are dynamic and they vary according 
to the changes in the measures on covariate (s) with 
time. Since the proposed utility function does not involve 
certain parameters like mental state, anxiety etc., which 
are included in the standard methods like EQ-5D and SF-6D, 
it is better to state such a utility function as a proxy utility 
function. These utility values are then used to calculate 
total QALY for each patient, since the time of registration 
in ART till the event of death (for observed cases) or till 
the lifetime time horizon (for censored cases). 

We have discussed the joint modelling approach and the 
methodology proposed to calculate proxy utility values 
and QALYs. A demonstration of the proposed method for 
calculating QALY using proxy utility functions is presented 
in this article. Survival and longitudinal data of HIV/AIDS 
patients undergoing treatment at the Antiretroviral Therapy 
(ART) center of Ram Manohar Lohia hospital in New Delhi 
has been used for the analyses. 
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Methodology
Joint Modelling of Longitudinal and Time-to-Event 
Data

Many at times, longitudinal data of patients comprises 
of repeated measures on a time dependent covariate, 
apart from the time-to-event of interest. For example, in 
HIV studies patients’ follow-up data includes time till the 
occurrence of the event of interest (death or development 
of AIDS) and repeated measurements on the biomarker 
(or covariate) CD4 lymphocyte count. Separate modelling 
of the longitudinal process and the time-to-event process 
fails in establishing association between the longitudinal 
progression of the covariate and the occurrence of the 
event. When our interest lies in assessing the impact of 
the time-dependent covariate on the time-to-event (or 
survival time), joint modelling serves as a better approach. 
Separate modelling does not take into account the fact 
that longitudinal measures on the time-dependent 
covariate are interrupted by the occurrence of the event, 
thus introducing bias in the estimation.14 Joint modelling 
approach overcomes this problem by maximizing the log-
likelihood corresponding to the joint distribution of the 
longitudinal and time-to-event outcomes. Lucid descriptions 
of this approach can be found in the works of Tsiatis AA, 
Davidian M,15 Yu M et al.16 and Rizopoulos D.17

Joint Model Specification
List of notations used in specifying the sub-models

n: number of cases (patients).

Ti*: True observed event time for i-th patient.

Ci: Censoring time for i-th patient.

Ti: event time for the i-th patient, where Ti = min(Ti*, Ci)

δi=I(Ti*≤Ci ); is the event indicator which takes value 1 when 
the event has occurred and 0 when observation is censored.

yi(t): value of the observed/ measured longitudinal outcome 
for patient i at time t.

tij: j-th occasion (time point) at which longitudinal response 
variable is observed for i-th patient. (j = 1, 2,…., ni) i.e. 
number of times, and the time points at which, longitudinal 
responses are recorded for a patient can differ from patient 
to patient.

yij: value of the longitudinal outcome for i-th patient at tij.

mi(t): true (unobserved) value of the longitudinal outcome 
for i-th patient at time t. It is different from yi(t) as it is 
assumed to be free of any measurement error which is 
present in yi(t).

Longitudinal sub-model: Linear mixed effects model.

Using the notations defined in the list of notations above, 
linear mixed effects model for i-th subject can be defined 
as follows:17

Where, β denotes the vector of the unknown fixed effects 
parameters, bi denotes a vector of random effects, xi(t) 
and zi(t) denote row vectors of the design matrices for the 
fixed and random effects respectively and ϵ_i (t) denotes 
the measurement error term which follows Normal 
distribution and is assumed to be independent of bi. As a 
standard choice, the random effects are assumed to follow 
multinomial normal distribution. 

Survival sub-model: Time dependent Cox PH

Again, using the notations mentioned in above, the survival 
sub-model can be defined as follows:17

Where, h0(t) denotes the baseline risk function, wi is a 
vector of baseline covariates and γ is a vector of coefficients 
corresponding to these baseline covariates. α measures the 
effect of the longitudinal outcome variable, mi(t), on the risk 
of occurrence of the event and is known as the association 
parameter. The name ‘association parameter’ emphasizes 
on the fact that this parameter measures the extent of 
association between the course of the longitudinal outcome 
variable and the risk of the event of interest. Association 
parameter helps in structural implementation of the idea of 
joint modelling of the longitudinal and survival processes.

Parameters of both sub-models are estimated jointly 
using maximum likelihood estimation by maximizing the 
joint likelihood function of the longitudinal and survival 
components. The joint log-likelihood contribution for i-th 
patient can be stated as:
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Where, denotes the vector of unknown 
parameters, with denoting the parameters for event time 
outcome,  denotes the fixed parameters for longitudinal 
outcomes, and  denotes the unique vector of parameters 
of the random -effects covariance matrix. Here p(.) denotes 
an appropriate probability density function. The likelihood 
contribution of the survival component can be written as,

Where, the first term represents likelihood for the observed 
cases and the second term represents contribution for 
the censored cases. R package JM, given by Rizopoulos D,  
provides a hybrid optimization procedure for maximizing 
the joint log-likelihood function given in equation (3).17 This 
procedure, under the method “spline-GH-PH”, starts with 
Expectation-Maximization algorithm, and if convergence 
is not attained, switches to quasi-Newton algorithm until 
convergence is achieved. 

Projection of Expected Longitudinal Response using 
the Fitted Model

Next step involves projecting progression of the longitudinal 
covariate at regular time intervals for censored cases, 
preferably at each time unit, until the Lifetime Time Horizon 
(LTH) of the study. LTH has a significant role in CEA as its 
choice can impact the estimation of overall gain in QALY and 
Incremental Cost Effectiveness Ratio (ICER) corresponding 
to the treatment under consideration. In studies involving 
a disease which has high rate of occurrence of the event, 
or for which it is possible to use quantile of the survival 
function to estimate the number of years after which 
most of the patients will experience the event of interest, 
time point corresponding to a quantile below 10% (say) 
of survivability can be taken as the LTH of the study. For 
instance, in a cancer study if we know that after 15 years of 
chemotherapy 95% of the patients are expected to be dead, 
we can choose the LTH for CEA as 15 years since the start of 
the treatment. For diseases where rate of occurrence of the 
event of interest is low making it difficult to calculate lower 
quantiles of survivability, life expectancy of the patients as 
reported by credible published works in the region of study 
can be taken as a parameter for fixing the LTH of the study. 
In such cases, CEA for each patient will be carried out for 
the period since the start of their treatment till the time 
their age reaches the average life expectancy; the period 
being taken as the LTH. We will discuss the implementation 
of the second case here. Ideally, sensitivity of CEA towards 
the choice of LTH should be verified by comparing CEA 
results at different possible values of LTH.18

Let L be the average life expectancy of patients undergoing 

the treatment under consideration and let the baseline 
age of i-th patient at the time of start of the treatment be 
AGEi. Then, the total length of time for i-th patient, since 
the start of treatment, for which QALY has to be calculated 
is given as:

Ei = L – AGEi … (5)

Here, Ei can be regarded as the LTH of the i-th patient. Let, 
Ri = Ei – Ti, where Ti is defined in the list of notations. Then 
Ri denotes the total length of time beyond Ti (observed 
period) for which the longitudinal covariate has to be 
projected for the i-th patient. To incorporate both censored 
and observed cases, we define Ri as follows;

Ri = Ei – Ti; if the case is censored i.e. the patient is still alive 
(hasn’t experienced the event).

Ti; if the case is observed i.e. the patient has experienced 
the event or if L ≤ AGEi … (6)

Steps for Projection/ Prediction

a. Let  be the vector of estimates of the parameters of 
the fixed effects and  be the vector of estimates of 
the mean component of the random effects. 

b. Use  and  to estimate expected values (mean 
values) of the longitudinal response yij (given  for 
each censored patient i at each time point j using the 
following equation.

Proxy Utility Function
The proposed proxy utility function has been defined as 
a function of changes in the longitudinal measures of the 
time dependent covariate. Effect of change in longitudinal 
measure on the utility has been derived from the estimated 
value of the association parameter α included in the survival 
sub-model in equation (2). Since the survival sub-model 
considered in our study is a time dependent Cox-PH model, 
exponential of the estimated coefficients represents extent 
of change in odds in favor of the event of interest (death 
in our case) per unit change in the covariate value. Thus, 
the association parameter represents the effect of changes 
in longitudinal covariate on the risk of the event (death). 
If the estimate is positive, increase in the covariate value 
results in increase in the odds in favor of the event (death), 
and if it is negative, odds in favor of the event decreases 
as the covariate value increases. Also, higher risk of death 
is associated with lower quality of life. So, inverse of 
exponential of the association parameter estimate has 
been taken as the proxy effect of change in the value of time 
dependent covariate on utility of the patient. Using these 
arguments, the utility function has been defined as follows. 
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Where,

Ui(t): Utility value of ith patient at time t.

, where y0i is the observed value of the time 
dependent covariate at baseline.

K: Cut-off value or reference value of the longitudinal 
covariate beyond which it is considered as to be in medically 
normal range. If no standardized clinical value is available, 
it can also be taken as equal to the average covariate 
values of people free from the disease/ infection under 
consideration. 

yi(t): Observed or predicted value of the longitudinal 
covariate at time t for the patient i.

Estimate of the association parameter obtained from 
joint modelling. 

Clearly, in the formula for calculating proxy utility represents 
the baseline proxy utility value at the time of registration and 
exp:  represents the change in proxy utility value 
as a result of the change in the value of the longitudinal 
covariate. Using the function defined in equation (8), utility 
values of each patient can be calculated at every time point 
at which measurement on the time dependent covariate 
is either available or predicted. At any point in time, if the 
calculated utility value exceeds 1, it is taken as equal to 
1. The utility function defined in (8) depicts the effect of 
relative change in the longitudinal covariate, with respect 
to its reference value, on utility. It should be noted that the 
functional form of the proxy utility does not assign equal 
utility values at equal values of the longitudinal covariate 
for two different subjects. Rather, it indirectly incorporates 
the association of relative changes in covariate values over 
time with the effectiveness of the treatment. If patients 
enter the study at different time points, and have different 
baseline covariates and different disease status (in terms 
of severity) at the time of registration, expecting equal 
utility values for two individuals only because of same 
CD4 count after a fixed time since registration will not be 
justified. The way in which the proxy utility function has 
been defined reflects on the quantum of effect of treatment 
on the subject through the inclusion of relative changes in 
CD4 cell count. Since our ultimate objective is to quantify 
the effectiveness of treatment over time, such definition 
of proxy utility shall lead us to logical conclusions. 

Equation (8) can be extended for more than one-time 
dependent covariates also. For instance, in a study on cost 
effectiveness of ART for HIV/ AIDS patients, changes in both 
CD4 count and body weight measured at each observation 
point can be used to define the proxy utility function. In 
such cases, the vector of weights of the variables included 
in the function can be normalized to ensure that the utility 
values remain in the range [0,1]. 

Calculation of QALY
Utility values can be classified into two categories; the 
ones calculated on the basis of observed covariate values 
and the ones calculated on the predicted values of the 
covariate. Let us denote the first category by U and the 
second category by V. Suppose that for censored cases, 
value of the time dependent covariate has been predicted 
at every time unit beyond the last observation time till the 
average life expectancy L i.e. for Ri time units after Ti; refer 
list of notations. The timeline of utility values for observed 
and censored cases can be visualized in the figures 1 and 
2 respectively. 

Figure 1.For patients who have experienced the event 
or whose baseline age ≥ L

Figure 2.For patients who have not experienced the 
event till Ti

Based on these utility values, QALY for each patient is 
calculated as follows:

For observed cases:

Here d is the discount rate per annum converted per unit 
time, say monthly.

For censored cases:

Implementation of the Proposed Methodology

As a demonstration, the methodology proposed in section 2 
has been employed to calculate QALY for HIV/ AIDS patients 
undergoing treatment at the ART center at Ram Manohar 
Lohia hospital in New Delhi. Retrospective follow-up data 
on 3465 patients, enrolled for ART treatment during the 
period April 2004 to November 2009 and followed till 
December 2010, has been obtained from register records 
of the hospital. All the records are in terms of patient id 
and in no way whatsoever the privacy and anonymity of 
patients is compromised. Cases with incomplete or missing 
information on factors and covariates included in the model 
like age, sex, Mode Of Transmission (MOT), smoking habit, 
drinking habit, hemoglobin, baseline weight etc., have been 
excluded from the analysis. Only adults of age 18 and above 
are retained in the study. Cases with no subsequent visit 
after the date of registration into ART are also not considered 
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for the analysis. After applying all exclusion criteria, only 
1520 cases qualified to be included in the study. Dataset 
contains information on status (dead or alive), time of death, 
age at the time of registration (baseline age), sex, smoking 
habit, alcohol consumption, baseline hemoglobin, mode of 
transmission of HIV (MOT), time of subsequent visits, CD4 
count at each visit, and weight measured at each visit. Use 
of this data complies with the ethical guidelines defined in 
the National Ethical Guidelines for Biomedical and Health 
Research - 2017 for administrative and secondary data. 

Joint Modelling
For the survival sub-model, the event of interest is 
occurrence of death. Longitudinal measurements on CD4 

count act as a significant indicator for assessing progression 
of HIV infection. So, the longitudinal sub-model is defined to 
assess the longitudinal progression of CD4 count of patients 
with respect to various factors and covariates. Since there 
are repeated measures on CD4 count for each patient, 
random effects are introduced through a linear mixed effects 
model to account for the hierarchical structure of the data. 
Random effects of observation time and intercept has been 
included in the longitudinal sub-model. The Cox-PH survival 
sub-model in (2) and the linear mixed effects longitudinal 
sub-model in (1) are jointly modelled using joint Model () 
function of the JM package in R. Results of the joint model 
are provided in the Table 2 and 3. Independent variables 
included in the models are defined in Table 1.

Table 1.Description of independent variables included in the models

S. No. Variable name Label Levels (if a factor)

1. obstime Time of observation in months calculated from the 
date of registration (a time dependent covariate) NA

2. SEX A factor variable with two levels, Male and Female 0=Female
1=Male

3. HB Hemoglobin level observed at baseline NA

4. D1_MOT Dummy variable for mode of transmission of HIV 1=sexually transmitted
0=other modes

5. D1_smoking Dummy variable for current status of smoking 1=currently smoke
0=otherwise

6. D2_smoking Dummy variable for past status of smoking 1=smoked in past
0=otherwise

7. D_alcohol Dummy variable for status of alcohol consumption 1=Yes
0=No

8. Age Age at baseline NA
9. Wight Weight measured at each visit (time dependent) NA

Table 2.Results of the joint model

Factor/Covariate
Longitudinal Sub-model Survival sub-model

Coefficient Estimates p-value Coefficient estimates p-value
(Intercept) 108.4910 <0.0001*** --------

obstime  12.1841 <0.0001*** --------
SEX (male) -33.6147 <0.0001*** -0.0329 0.9134

HB  11.5416 <0.0001*** -0.1183 0.0224**
D1_MOT (sexual) -17.2330 0.0368** -0.4348 0.1379

D1_smoking (currently)  8.2168 0.3860  0.4751 0.2413
D2_smoking (past)  -1.5441 0.8427  0.5077 0.0795*

D_alcohol (yes)  -5.4702 0.4546  0.0318 0.9105
AGE  -1.0397 0.0007***  0.0096 0.4013
wt -------- -0.0854 <0.0001***

Association -------- -0.0269 <0.0001***
*** Significant at 1% level of significance; ** Significant at 5% level of significance; * Significant at 10% level of significance.
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From Table 2, we can see that the estimate of association 
parameter between the longitudinal measures on CD4 
count and the survival sub-model is highly significant and 
its negative value implies that increase in the values of CD4 
count results in decrease in the hazard of death. 

Projecting CD4 Count for Censored Cases Using 
the Fitted Longitudinal Sub-Model 
Steps

Life Expectancy

It is not possible to calculate median survival time or any p-th 
percentile survival time for p≤ 0.5 from the Kaplan- Meier 
(KM) curve (figure 3). Also, survival times of each censored 
patient cannot be directly predicted using Cox- PH survival 
sub-model. As an alternative, as discussed in section 2.2, 
we have calculated LTH for each patient on the basis of 
average life expectancy of HIV/ AIDS patients in India. There 
is a dearth of studies on forecasting life expectancy of HIV 
patients in India. However, since the interest of this section 
lies mainly in demonstrating the implementation of the 
proposed method, we haven’t presented any comprehensive 
scientific review for our choice of average life expectancy of 
HIV patients under ART in India. But we have also refrained 
from arbitrary choice of average life expectancy and have 
employed the following arguments to support our choice. 
According to the global scenario of life expectancies reported 
in various studies like May MT et al.,19 Egger M & Johnson 
LF,20 Katz IT & Maughan-Brown B21 and many others, life 
expectancy of HIV positive people under ART are getting 
closer to the HIV negative people across the world, while 
the closeness may differ from country to country. According 
to a meta-analysis study done by Teeraananchai S et al.22 
for low/ middle income countries, average life expectancy 
after starting ART at ages 20 years and 35 years are 28.3 
years and 25.6 years respectively. The average baseline age 
of the patients included in our study, i.e. the average age at 
which the patients were enrolled into ART, is 34.48 years. 
Also, it should also be noted that the average life expectancy 
at birth in India during 2009 was reported to be around 65 
years. Based on this information, we have taken the average 
life expectancy of HIV positive patients undergoing ART for 
our study as 60 years, i.e. L = 60 years.

1. For each patient we calculate the TMH, i.e. Ei, using 
equation (5). Ei is further used to calculate Ri using 
equation (6). 

2. Based on the results reported in table 2, expected CD4 
count (conditional over estimated random effects) 
for i-th patient at j-th month is projected using the 
following function.

CD4ij = 108.4910 + 12.1841.obstimeij – 33.6147. SEXi + 
11.5416. HBi - 17.2330. D1_MOTi + 8.2168. D1_smokingi 
– 1.5441. D2_smokingi – 5.4702. D_alcoholi – 1.0397. AGEi

Table 3.Estimates of variance component of random 
effects in the longitudinal sub-model

Standard Deviation
Intercept 61.4849
obstime 6.8313

Figure 3.KM curve for survival of the HIV/ AIDS patients

Utility Calculations

On examining the findings of Rungta A et al.,23 Shahapur 
PR et al.,24 Ramalingam S et al.25 and Uppal SS et al.,26 the 
reference value of CD4 count for a healthy person in India 
is taken as 800 on an average (rounded off), i.e. K= 800. 
Let y0i be the baseline CD4 count of the i-th patient. Then 
we define 

Using equation (8), the proxy utility function for i-th patient 
at time t can be written as,

For all patients, proxy utility values are calculated at each 
observation time (visit time) till Ti using equation (11). For 
censored cases, proxy utility values are further calculated 
at each month from Ti +1 till Ri using the same function. It 
should be noted that till Ti, between any two successive 
time points at which observed values of CD4 counts are 
available, utility values are assumed to be constant.

QALY Calculations

A discount rate of 3% per annum has been used for the 
calculation of QALY. Converting this rate into effective 
monthly rate, we have d = .03/ 12 = 0.0025. Using this 
value of d, and the utility values calculated in the previous 
section in the formulae (9) and (10), we get the total QALY 
gained by each patient after getting registered in the ART 
centre. For instance, Total QALY gained by first ten patients 
came out as 9.802356, 12.657515, 9.425577, 10.003628, 
11.416873, 14.433912, 14.662325, 13.053493, 15.310978, 
and 14.126491 years respectively. The average of total 
QALYs of all patients is calculated to get the mean QALY 
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gain due to ART treatment. The mean QALY has come out 
to be 11.18045 years. 

Programming

Algorithms for all calculations described in the sections 
3.2, 3.3, and 3.4 have been indigenously implemented in 
R without using any pre-existing package. 

Discussion and Conclusion
Based on the results of section 3.4, we can conclude that, 
on an average, patients gain 11.18045 QALYs, discounted at 
3% per annum, after getting enrolled in ART till the time they 
reach the average life expectancy of HIV patients. This result 
is consistent with, or at least not much different from, the 
findings of CEA of ART in India done by Bender MA et al.27 
Bender MA  et al.27 found that for different combinations of 
drugs in ART, the average gain in QALY discounted at 3% per 
annum ranged from 115.5 months (9.625 years) to 125.8 
months (10.48 years). It should be noted that the authors 
have used state specific utility values taken from studies 
in United States, which is a developed country as opposed 
to India. Also, calculations of QALY in their study are based 
on a state transition model or a multi-state model.

The method proposed in this paper is specifically applicable 
when the survival data is accompanied with longitudinal 
measurements on certain covariates. In such cases, this 
method incorporates the advantages of joint modelling of 
survival and longitudinal models over separate modelling. 
Further, it eliminates the need to define different states of 
the disease and to assume that utility values of all patients 
are equal and fixed within each state. Thus, it provides 
the scope of introducing patient level variability in the 
course of utilities, even within any particular state of the 
disease. Since the utility values of each patient can be 
calculated at each time point, we can calculate total QALY 
gained by each patient separately, which is not possible 
in the case of multi state model-based CEA. Apart from 
these benefits, proxy utility function allows us to calculate 
utilities without spending extra resources on conducting 
surveys for using standard methods like EQ-5D and SF-6D. 
Also, proxy utility function provides much more flexibility 
and dynamics by avoiding standardization of state specific 
utility values across different regions, socio-economic strata, 
ages, gender, opportunistic risks and many such factors of 
patient level variability. 

The fact that psychological state of the patients cannot be 
taken into account while defining the proxy utility function, 
can be considered as a limitation of the proposed method. 
To include psychological state in the calculation of proxy 
utilities some measures like scores of psychometric tests 
will be required. Although possible, this exercise will have 
to be carried out during each visit of the patients, contrary 
to the objective of the proposed method. 
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