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Background: Invasive pulmonary aspergillosis (IPA) is a life-threatening 
fungal infection, particularly affecting immunocompromised individuals. 
The increasing emergence of antifungal resistance among Aspergillus 
species poses significant challenges to effective therapy, especially in 
regions with limited surveillance data. 

Objectives: To investigate the distribution of Aspergillus species isolated 
from IPA patients in Baghdad and evaluate their susceptibility patterns 
to commonly used antifungal agents. 

Methods: This cross-sectional study included 250 patients diagnosed 
with IPA at Medical City Hospital, Baghdad, between September 2024 
and May 2025. Clinical diagnosis was confirmed through imaging, 
galactomannan, and (1,3)-β-D-glucan assays. Isolates were identified 
and tested for susceptibility to nine antifungal drugs, including triazoles, 
echinocandins, amphotericin B, and 5-fluorocytosine, using the 
Microorganism Identification and Antimicrobial Susceptibility Testing 
(ID&AST) System MA120 following Clinical and Laboratory Standards 
Institute (CLSI) guidelines. 

Results: Aspergillus flavus was the most prevalent species (58%), 
followed by A. fumigatus (30%), A. niger (8%), and A. terreus (4%). All 
isolates exhibited 100% resistance to fluconazole and 5-fluorocytosine. 
Moderate to high resistance was observed against triazoles (16.0–
21.2%), echinocandins (56–58%), and amphotericin B (38%). A. flavus 
demonstrated the broadest resistance spectrum, whereas A. fumigatus 
retained better susceptibility to triazoles but showed emerging 
resistance. 

Conclusion: High levels of antifungal resistance in Aspergillus species, 
especially A. flavus, were revealed by this study, highlighting the rise of 
multidrug resistance. To treat IPA, it is critically important to implement 
new treatment approaches and routine susceptibility testing.
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Introduction 
One of the most prevalent types of fungi in the world is 
Aspergillus. In regard to abiotic growth circumstances, 
they lack a high degree of selection; Aspergillus species 
are frequently isolated from different geographic places.1 
Inhalation of Aspergillus spores can cause an allergic 
reaction in certain individuals; other people may develop 
lung infections that range from moderate to severe. When 
the infection spreads to blood vessels and beyond, it results 
in invasive aspergillosis, the most dangerous type of the 
disease.2

Invasive pulmonary aspergillosis (IPA), a serious fungal 
infection, is brought on by the filamentous Aspergillus 
species. Aspergillus infection is reliant on immunologic 
response and host variables. All individuals are exposed 
to the fungus spores, but only those with compromised 
immune systems can develop invasive infections. People 
with weakened immunity, such as those receiving 
chemotherapy, organ transplant recipients, or those 
with advanced HIV/ AIDS, are frequently impacted.3,4 Risk 
factors are constantly changing and have been seen after 
a COVID-19 infection. These factors include post-influenza 
infection and novel biological agents that target the immune 
system.5 COVID-19-associated pulmonary aspergillosis 
(CAPA) has emerged as a recognised consequence, 
particularly in patients in the intensive care unit (ICU) 
who are on corticosteroids or mechanical ventilation. 
Although advantageous for COVID-19, these immune-
modulating treatments also make people more vulnerable 
to opportunistic fungal infections like IPA.6–8

IPA is becoming more common over time. A 2023 published 
study ,conducted in 2023,  has shown that the overall 
one-year mortality rate for IPA patients was 32%,9 with 
overall mortality rates in invasive forms of the disease 
ranging from 35.6% to 70.0%10,11. Aspergillus fumigatus 
(80%) is the primary cause of IPA, followed by A. flavus 
(15–20%).12 Recently, A. fumigatus was added to the 
World Health Organization fungal priority pathogen list as 
a part of the critical priority group of the list (Cryptococcus 
neoformans, Candida auris, Aspergillus fumigatus, and 
Candida albicans). Regarding their burden on public 
health, Aspergillus fumigatus and Candida albicans were 
ranked highly; both of them placed in the top four.13 For 
the majority of clinical forms of aspergillosis, triazoles 
are the primary choice. Triazoles and amphotericin B, 
two kinds of antifungal medications now used to treat 
aspergillosis, target ergosterol. Echinocandins, a third class 
of chemicals, prevent the formation of beta-1,3-glucan, 
a crucial component of fungal cell walls.14,15 As members 
of the triazole class, voriconazole, isavuconazole, and 
posaconazole are the first-line treatments for invasive 

infections, and voriconazole or itraconazole are the first-
line treatments for chronic illnesses.16–18

Aspergillus acquired resistance to azoles has been 
documented since 1990. Data on resistance, particularly 
for A. fumigatus, has grown dramatically in recent years, 
with up to 20% of Aspergillus isolates exhibiting entirely 
newly developed resistance to widely used antifungal 
medications.19,20 Nevertheless, the global distribution of 
antifungal-resistant strains and resistance patterns is still 
unclear. The prolonged use of these medications, especially 
during long-term treatment, may result in antifungal 
pressure, which is what selects non-susceptible clones. 
A combination therapy using medications with distinct 
modes of action, such as voriconazole, amphotericin B 
and echinocandin, is recommended for the treatment 
of resistant aspergillosis. The increased use of second-
line medicines, such as echinocandins, in monotherapy 
is a result of Aspergillus species’ resistance to first-line 
drugs.21–23 

The current study offers region-specific insights into the 
prevalence of Aspergillus species and their antifungal 
resistance patterns, particularly in the Middle Eastern 
context (Baghdad, Iraq), revealing the antifungal 
susceptibility profiles of IPA patients.

Materials and Methods 
Patients and Sampling

The cross-sectional study included 250 patients diagnosed 
with IPA who were treated at Medical City Hospital, 
Baghdad, between September 2024 and May 2025. 
Patients were diagnosed with IPA using clinical symptoms, 
Computed Tomography (CT) scans and laboratory tests, 
including galactomannan and (1,3)-β-D-glucan assays. 
The Ethical Committee at the College of medicine, Al-
Iraqia University (Reference: CMEC/0356/0020). A written 
informed consent was obtained from all participants. The 
research was performed in accordance with the Code of 
Ethics of the World Medical Association (Declaration of 
Helsinki).

Antifungal Susceptibility Test

Every isolate was sent for identification and testing for 
resistance to nine antifungal medications represented 
by triazoles (fluconazole, itraconazole, voriconazole, 
posaconazole, and isavuconazole), echinocandins 
(caspofungin and micafungin), amphotericin B, and 
5-fluorocytosine. The Microorganism Identification and 
Antimicrobial Susceptibility Testing (ID&AST) System MA120 
(Render, China) was used for identification and resistance 
testing; the susceptibility test was carried out in compliance 
with Clinical and Laboratory Standards Institute (CLSI) 
guidelines.24
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Statistical Analysis

The Statistical Packages of Sciences (SPSS) programme 
(2019) was used to detect the effect of different factors on 
study parameters. Chi-square test was used to significantly 
compare the percentages (significant at 0.05 and 0.01) in 
this study.

Results
Demographics 

Among the 250 IPA patients, 74% (185) of isolates were 
male, while 26% (65) were female. The p value was less 
than 0.01, which indicated that there was a significant 
difference between the number of males and females and 
not just a random difference (Table 1).

Age Distribution

The largest age group was more than 60 years of age 
(75 individuals, 30%); the second largest age group was 
20–30 years (57 individuals, 22.80%). The groups of less 
than 20 years (42 individuals, 16.80%) and 40–50 years 
(38 individuals, 15.20%) also contributed significantly; 
the smallest group was 30–40 years (10 individuals, 4%). 
This indicated a bimodal distribution, where younger 
(20–30 years) and older (> 60 years) individuals were 
more represented. Since p ≤ 0.01, the result was highly 
significant. This suggests that the age distribution is not 
random and differs significantly from an expected uniform 
distribution (Table 2).

The most prevalent species in the sample of 250 isolates 
was Aspergillus flavus, accounting for 58% of the total 
sample. Aspergillus fumigatus followed with 30% of the 
isolates. Aspergillus niger and Aspergillus terreus were less 
common, making up 8% and 4%, respectively (Table 3).

Identification of Antifungal Susceptibility Profiles
This study tested four Aspergillus species against five triazole 
antifungals, including fluconazole (FLC), itraconazole (ITR), 
voriconazole (VRC), isavuconazole (ISA), and posaconazole 
(POS), two types of echinocandins, namely caspofungin 
(CAS) and micafungin (MCF), amphotericin B (AMB), and 
5-fluorocytosine (5-FC). The statistical analysis showed the 
studied Aspergillus species had very high resistance toward 
FLC and 5-FC with all (100%) isolates being resistant; for the 
other types of triazole (ITR, VRC, ISA, and POS), Aspergillus 
species showed significant resistance, with 20%, 16%, 20%, 
and 21.2% of isolates being resistant, respectively, while 
towards AMB, moderate resistance was indicated (38%), 
and for echinocandins (MCF and CAS), there was a high 
resistance of 56.4% and 58.0%, respectively (Table 4).
Aspergillus spp. Susceptibility Profiling for FC and 
5-FC
All studied Aspergillus species showed resistance to FLC; 
minimum inhibitory concentrations (MICs) for all isolates 
were ≥ 64 μg/mL, and there was no breakpoint for this 
drug by CLSI, as Aspergillus spp. are considered intrinsically 
resistant to FLC. For 5-FC, all (100%) isolates were resistant; 
MICs for all isolates were ≥ 2 μg/mL, and there was no 
breakpoint for this drug by CLSI, as Aspergillus spp. are 
considered intrinsically resistant to 5-FC (Table 5).
Aspergillus flavus Susceptibility Profiling 
In the current study, A. flavus susceptibility profiling of 
triazoles was as follows: For ITR, 37 (25.5%) were non-
wild type (NWT) and 108 (74.5%) were wild type (WT) 
(Epidemiological Cutoff Value (ECV) 1 μg/mL). For VRC, 
only 27 (18.6%) were NWT and 118 (81.4%) were WT (ECV 
2 μg/mL). For ISA, 37 (25.5%) were NWT and 108 (74.5%) 
were WT (ECV 1 μg/mL). For POS, 40 (27.6%) isolates were 
NWT, and 105 (72.4%) were WT (ECV 0.5 μg/mL) (Table 5). 
A. flavus susceptibility profiling of echinocandins showed 
that for CAS, 88 (60.7%) were NWT, and 57 (39.3%) were 
WT (ECV 0.5 μg/mL), and for MCF, 93 (64.1%) were NWT, 
while 52 (35.9%) were WT (ECV ≤ 0.5 μg/mL). CLSI has not 
established a specific ECV for MCF against A. flavus; thus, 
this study used a suggested ECV from a previous work.25 
A. flavus susceptibility profiling of AMB revealed that 66 
(54.5%) were NWT, and 79 (45.5%) were WT (ECV 4 μg/
mL) (Table 6).

Sex Number Percentage 
Male 185 74.00

Female 65 26.00
Total 250 100.00

Chi-square: χ2 (p value) - 57.60**(0.0001)

Table 1.Distribution of Study Sample According to 
Sex

Table 2.Distribution of Study Sample According to 
Age Groups

Table 3.Distribution of Study Sample According to 
Species

Age Groups (Years) Number Percentage 
< 20 42 16.80

20–30 57 22.80
30–40 10 4.00
40–50 38 15.20
50–60 28 11.20
> 60 75 30.00
Total 250 100.00

Chi-square: χ2 (p value) - 61.063**(0.0001)

Species Number Percentage 
Aspergillus flavus 145 58.00

Aspergillus fumigatus 75 30.00
Aspergillus niger 20 8.00

Aspergillus terreus 10 4.00
Total 250 100.00

Chi-square: χ2(p value) - 184.40**(0.0001)

**p ≤ 0.01

**p ≤ 0.01

**p ≤ 0.01
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Table 4.Results of Antifungal Susceptibility of Samples

FLC ITR VRC ISA POS CAS MCF AMB 5-FC p 
Value

S (WT) 
n (%) 0 (0.00) 200

(80.00)
210

(84.00)
200

(80.00)
197

(78.80)
105

(42.00)
109

(43.60)
155

(62.00)
0

(0.00)
0.0001 

**

R 
(NWT) 
n (%)

250
(100.00)

50
(20.00)

40
(16.00)

50
(20.00)

53
(21.20)

145
(58.00)

141
(56.40)

95
(38.00)

250
(100.00)

0.0001 
**

p value 0.0001 
**

0.0001 
**

0.0001 
**

0.0001 
**

0.0001 
**

0.0031 
**

0.0044 
**

0.0001 
**

0.0001 
** -

FLC: Fluconazole, ITR: Itraconazole, VRC: Voriconazole, ISA: Isavuconazole, POS: Posaconazole, WT: wild type, NWT: non-wild type
**p ≤ 0.01

FLC ITR VRC ISA POS

Aspergillus flavus 
n (%)

145 (R)
(100.00)

37 (NWT)
(25.50)

27 (NWT)
(18.60)

37 (R)
(25.50)

40 (NWT)
(27.60)

0 (S)
(0.00)

108 (WT)
(74.50)

118 (WT)
(81.40)

108 (S)
(74.50)

105 (WT)
(72.40)

Aspergillus 
fumigatus n (%)

75 (R) 
(100.00)

13 (NWT)
(17.30)

13 (NWT)
(17.30)

13 (NWT)
(17.30)

13 (NWT)
(17.30)

0 (S)
(0.00)

62 (WT)
(82.70)

62 (WT)
(82.70)

62 (WT)
(82.70)

62 (WT)
(82.70)

Aspergillus niger 
n (%)

20 (R)
(100.00)

20 (WT)
(100.00)

20 (WT)
(100.00)

20 (WT)
(100.00)

20 (WT)
(100.00)

Aspergillus terreus 
n (%)

10 (R)
(100.00)

10 (WT)
(100.00)

10 (WT)
(100%)

10 (WT)
(100.00)

10 (WT)
(100.00)

All isolates n (%)

R 250 (100.00) NWT 50 
(20.00)

NWT 40 
(16.00)

NWT 50
(20.00)

NWT 53
(21.20)

S 0 (0.00) WT 200 
(80.00)

WT 210
(84.00)

WT 200
(80.00)

WT 197
(78.80)

Table 5.Susceptibility Profile of Aspergillus Isolates for Triazole Antifungals

FLC: Fluconazole, ITR: Itraconazole, VRC: Voriconazole, ISA: Isavuconazole, POS: Posaconazole, CAS: Caspofungin, MFC: Micafungin, AMB: 
Amphotericin B, 5-FC: Fluorocytosine WT: wild type, NWT: non-wild type
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Aspergillus fumigatus Susceptibility Profiling

In the current study, the susceptibility profiling of A. 
fumigatus to triazoles was as follows: for all tested triazoles 
except FLC (ITR, VRC, ISA, and POS), 13 (17.3%) isolates 
showed the NWT phenotype, while 62 (82.7%) showed 
the WT phenotype (ECV 1 μg/mL for ITR, VRC, and ISA and 
0.5 μg/mL for POS). A. fumigatus susceptibility profiling 
of echinocandins showed that for CAS, 42 (56%) were 
NWT and 33 (44%) were WT (ECV 0.5 μg/mL); for MCF, 42 
(56%) were NWT and 33 (44%) were WT (ECV 0.25 μg/mL). 
CLSI has not established a specific ECV for MCF against A. 
fumigatus; thus, the present study used a reasonable ECV 
suggested in a previous study.26,27 For AMB, 24 (32%) were 
NWT, and 51 (86%) showed a WT phenotype (ECV 2 μg/mL).

Other Aspergillus spp. Susceptibility Profiling

The other isolated species included Aspergillus niger and 
Aspergillus terreus. For all tested triazoles except for FLC, 

all isolates (100%) showed the WT phenotype. The ECV 
values against A. niger were 4 μg/mL (ITR), 2 μg/mL (VRC), 
4 μg/mL (ISA), and 2 μg/mL (POS). In contrast, A. terreus 
had ECV values of 2 μg/mL (ITR), 2 μg/mL (VRC), 1 μg/mL 
(ISA), and 1 μg/mL (POS). A. niger susceptibility profiling of 
echinocandins revealed that for CAS, only 5 (25%) isolates 
were NWT and 15 (75%) were WT (ECV 0.25 μg/mL), while 
for MCF, 1 (5%) was NWT and 19 (95%) were WT (ECV 0.25 
μg/mL). The ECV value used was obtained from a previous 
study.25 For AMB, only 5 (25%) isolates were NWT and 15 
(75%) were WT (ECV 2 μg/mL). A. terreus susceptibility 
profiling of echinocandins revealed that for CAS, all isolates 
(100%) showed NWT phenotype (ECV 0.12 μg/mL), while 
for MCF, 50% of isolates were NWT and the other 50% 
were WT (ECV 2 μg/mL), depending on ECV determined 
from a previous study.25 For AMB, all isolates showed the 
WT phenotype (ECV 4 μg/mL).

Table 6.Susceptibility Profile of Aspergillus Isolates for Echinocandins, Amphotericin B, and 5-fluorocytosine 
Antifungals

CAS MCF AMB 5-FC

Aspergillus flavus n (%)
88 (NWT) (60.70) 93 (NWT) (64.10) 66 (NWT) 

(54.50) 145 (NWT) 
(100.00)

57 (WT) (39.30) 52 (WT) 
(35.90)

79 (WT)
(45.50)

Aspergillus fumigatus 
n (%)

42 (NWT)
(56.00)

42 (NWT)
(56.00)

24 (NWT)
(32.00) 75 (R)

(100.00)33 (WT)
(44.00)

33 (WT)
(44.00)

51 (WT)
(86.00)

Aspergillus niger n (%)

5 (NWT)
(25.00)

1 (NWT)
(5.00)

5 (NWT)
(25.00) 20 (NWT)

 (100.00)15 (WT)
(75.00)

19 (WT)
(95.00)

15 (WT)
(75.00)

Aspergillus terreus n (%) 10 (NWT)
(100.00)

5 (NWT)
(50.00) 10 (WT)

(100.00)
10 (NWT)
(100.00)5 (WT)

(50.00)

All isolates 
n (%)

NWT 145
(58.00)

NWT 141
(56.40)

NWT 95
(38.00)

NWT 250
(100.00)

WT 105
(42.00)

WT 109
(43.60)

WT 155
(62.00) WT 0 (0.00)

CAS: Caspofungin, MFC: Micafungin, AMB: Amphotericin B, 5-FC: Fluorocytosine , WT: wild type, NWT: non-wild type
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No. of Isolates at Each Determined MIC Value (μg/mL)

Drug ≤ 
0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 MIC

Range (μg/mL)
GM

MIC (μg/L)

A.
	

fla
vu

s

FLC - - - - - - - - - - - - - 38 79 28 64.000–256.000 128.00

ITR - - - - 19 89 - * 9 14 - - 14 - - - 0.120–32.000 1.50

VRC - - 13 7 61 23 14 - * - - 13 14 - - - 0.030–32.000 0.54

ISA - 11 5 51 23 18 - * - - - 23 14 - - - 0.015–32.000 0.32

POS - - 21 33 46 5 * 9 - - 3 14 14 - - - 0.030–32.000 0.82

CAS 33 - - 14 10 - * - 14 9 - 65 - - - - ≤ 0.008–16.000 0.44

MCF 28 - - 14 46 5 * - - - 5 47 - - - - ≤ 0.008–16.000 0.35

AMB - - - - - - 5 51 23 * 14 23 29 - - - 0.500–32.000 4.00

5-FC - - - - - - - - 33 47 25 - 5 19 16 - 2.000–128.000 16.00

A.
	

fu
m

ig
at

us

FLC - - - - - - - - - - - - - 33 23 19 64.000–256.000 128.00

ITR - 9 10 - 5 38 - * - - - - 13 - - - 0.015–32.000 0.21

VRC - 19 7 18 10 2 6 * - - - 6 7 - - - 0.015–32.000 0.34

ISA - 25 - 27 5 5 - * - 5 - - 8 - - - 0.015–32.000 0.57

POS - 23 - 33 6 - * - 2 - 1 6 4 - - - 0.015–32.000 0.98

CAS 12 11 2 3 5 - * 4 8 - 9 21 - - - - ≤ 0.008–16.000 0.34

MFC 22 - 7 - 4 * - - - 3 11 28 - - - - ≤ 0.008–16.000 0.49

AMB - - - - 11 6 9 25 *3 3 9 9 - - - - 0.120–16.000 1.40

5-FC - - - - - - - - 8 3 12 18 19 15 - - 2.000–64.000 11.31

Table 7.Antifungal Susceptibility Profile of Aspergillus Species Isolates
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A.
ni

ge
r

FLC - - - - - - - - - - - - - 14 3 3 64.000–256.000 128.00

ITR - - 6 4 3 7 - - - * - - - - - - 0.030–0.250 0.08

VRC - - - 3 12 5 - - * - - - - - - - 0.060–0.250 0.12

ISA - 3 7 1 6 3 - - - * - - - - - - 0.015–0.250 0.06

POS - 3 1 5 11 - - - * - - - - - - - 0.015–0.120 0.04

CAS 3 5 7 - - * 3 1 1 - - - - - - - ≤ 0.008–0.030 0.12

MFC 4 6 6 3 - * 1 - - - - - - - - - - ≤ 0.008–0.060 0.03

AMB - - - - 1 1 2 11 - * - 3 2 - - - 0.120–1.000 1.40

5-FC - - - - - - - - - - 7 13 - - - - 8.000–16.000 11.30

A.
	

te
rr

eu
s

FLC - - - - - - - - - - - - - 3 4 3 64.000–256.000 128.00

ITR - - - 2 5 3 - - * - - - - - - - 0.060–0.250 0.12

VRC - - 1 1 1 7 - - * - - - - - - - 0.030–0.250 0.08

ISA - 2 1 2 5 - - * - - - - - - - - 0.015–0.120 0.04

POS - - 3 7 - - - * - - - - - - - - 0.030–0.060 0.04

CAS - - 4 1 * - - - - - - 5 - - - - 0.030–16.000 0.30

MFC - - - 1 4 - - - * - 2 3 - - - - 0.060–16.000 0.97

AMB - - - - - 6 2 2 - * - - - - - - 0.250–1.000 0.50

5-FC - - - - - - - - - - - - - 2 8 - 46.000–128.000 90.50
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Discussion 
A. flavus was the most common species of Aspergillus in the 
current study. This contrasts with many Western studies, 
which showed that A. fumigatus predominates, while A. 
flavus is the second most isolated species in Europe and 
the United States.28,29 However, the present study aligns 
with regional trends in Asia and the Middle East, where A. 
flavus is more prevalent due to environmental and climatic 
conditions.30,31

The in vitro susceptibility profile of nine antifungals against 
four isolated Aspergillus species was evaluated in this 
work (Table 7) . The testing revealed that all the isolated 
species were completely resistant to FLC and 5-FC, with 
MICs of 64 μg/mL or higher for FLC and 2 μg/mL or higher 
for 5-FC. Since fluconazole has low efficacy against moulds 
like Aspergillus due to either fungal cell wall variations 
or the inability of fluconazole to attach to their target 
enzyme, Aspergillus is known to be inherently resistant 
to fluconazole.32,33 Numerous studies have demonstrated 
that intrinsic resistance to 5-FC is universal. This resistance 
may be brought about by the downregulation of the FCYB 
gene, which codes for the enzyme that facilitates 5-FC 
absorption.34 A study showed that the complexity of 5-FC 
resistance in Aspergillus species is highlighted by the 
fact that changes in tRNA can help A. fumigatus become 
resistant to 5-FC.35

Other triazole (ITR, VRC, ISA, and POS) resistance profiles 
were 20.0%, 16.0%, 20.0%, and 21.2%, respectively. A. flavus 
showed higher resistance to triazole than A. fumigatus; this 
may be attributed to environmental azole exposure or 
long-term prophylaxis in immunocompromised patients.36

For AMB, moderate resistance was observed (38%) overall, 
with A. flavus showing more than 45% resistance. This result 
aligns with an Iranian study, where a decreased resistance 
to the drug was observed.37 Resistance to AMB is concerning 
due to its role as a second-line therapy, especially in azole-
resistant cases. High resistance rates for echinocandins 
(CAS and MFC) were reported (56–58% overall). A. terreus 
showed 100% resistance to CAS. This challenges the use of 
echinocandins in monotherapy and supports combination 
therapy in resistance cases. The echinocandin resistance 
pattern in the current study is consistent with three regional 
studies from Iran and  Vietnam.38–40 A. flavus showed the 
broadest resistance spectrum, including notable resistance 
to echinocandins and AMB in addition to triazole. A. 
fumigatus retained better susceptibility to azole but still 
demonstrated emerging resistance. A. niger and A. terreus 
had relatively lower resistance to azoles, but showed 
variable responses to echinocandins. These findings align 
with those of Arastehfar et al.’s study.41

In this study, Aspergillus fumigatus showed a significant 

resistance to several common triazole antifungals (ITR, VRC, 
ISA, and POS), with 17.3% of samples showing the NWT 
phenotype for all of them. Even though the majority of 
isolates (82.7%) were still susceptible, the consistent NWT 
rate across all triazoles pointed to the establishment of 
multidrug resistance (MDR) in the strains of A. fumigatus. 
Triazole’s cross-resistance is especially worrisome because 
both drugs , itraconazole and voriconazole, have a shared 
target, lanosterol 14-demethylase.  MDR significantly 
reduces available treatments. When voriconazole, the 
first-line medication, proves ineffective, people turn to 
amphotericin B or echinocandins; considerable resistance 
to these was also exhibited in the current study.42,43

In the post-COVID-19 era, where IPA has become a major 
secondary illness (CAPA), the results of our study are 
very pertinent. The observed resistance patterns may 
be attributed to heightened vulnerability to Aspergillus 
infection caused by the immunosuppressive effects 
of corticosteroid medication, extended intensive care 
unit stays, and the use of mechanical ventilation during 
COVID-19. Furthermore, our isolates’ high A. flavus 
prevalence and resistance to several antifungals could 
be the result of environmental exposure and increased 
selective pressure during the pandemic.44,45

Conclusion
The high resistance rates underscore the need for routine 
susceptibility testing to guide targeted therapy. Voriconazole 
remains a first-line treatment, but its effectiveness is 
threatened by rising resistance. Combination antifungal 
therapy should be considered for resistant or mixed-species 
infections. The species distribution should guide empirical 
therapy in local settings. Routine antifungal susceptibility 
testing should be implemented in clinical laboratories to 
guide effective species-specific treatment of IPA; empirical 
use of FLC and 5-FC should be avoided in suspected IPA 
cases. Triazole resistance also warrants cautious use 
and may necessitate alternative combination therapies. 
Expanded multicentre studies across different regions 
of Iraq and the Middle East are needed to validate these 
findings, assess resistance trends over time and inform 
national treatment protocols. 
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