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Introduction: Chest radiography (CXR) is commonly used for diagnosing 
lung and cardiothoracic disorders, including coronavirus disease 
(COVID-19) pneumonia. However, its diagnostic accuracy during the 
early COVID-19 stages was limited. Artificial intelligence (AI) can enhance 
CXR analysis and diagnostic accuracy. 

Objective: To evaluate AI in X-ray diagnostics for COVID-19 patients 
in Kyrgyzstan. 

Methods: Three radiologists reviewed CXR reports of pneumonia patients 
and healthy individuals. An AI system with the MedVit deep learning 
model identified COVID-19 pneumonia, and its reports were compared 
to radiologists’ interpretations to evaluate diagnostic accuracy.

Results: AI’s performance in detecting pneumonia matched that of 
radiologists, with 88.31% sensitivity and 96.67% specificity. High 
Youden index values indicated quality. AI can enhance X-ray accuracy, 
especially in resource-limited settings, though challenges like data 
quality, standardization, and ethics must be addressed for widespread 
adoption.

Conclusion: Collaboration between radiologists and AI can enhance 
radiological reports for patients with COVID-19 pneumonia, particularly 
in rural areas with staff shortages.

Keywords: Chest Radiography, COVID-19, Pneumonia, Artificial 
Intelligence, Radiologists
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Introduction
Chest radiography (CXR) is the most prevalent imaging 
method for detecting and analysing lung and cardiothoracic 
abnormalities,1–3 accounting for approximately 20% of 
all radiographic examinations in radiology departments. 
Traditionally, radiologists interpret CXR images.4–8

Coronavirus disease (COVID-19) primarily affects the 
respiratory system, and CXR is the initial imaging method 
for assessing uncertain cases9 and involvement of their 
lungs. However, the diagnostic effectiveness of CXR in early 
COVID-19 stages is limited, as early pathological changes 
may not be visible on radiographs, but can be detected 
via lung computed tomography.10 Studies indicate that 
CXR in confirmed COVID-19 pneumonia cases has a 69% 
sensitivity.11 Despite its lower sensitivity, CXR is more 
accessible than lung computed tomography and can aid 
in COVID-19 diagnosis.

Radiologist shortages are pronounced in low-income 
countries, where they are concentrated in major urban 
hospitals, leaving rural and remote areas underserved.4,12

Various techniques are currently being evaluated for chest 
imaging, particularly for pneumonia detection. CXR is 
ideal for developing deep learning systems for automated 
diagnosis that require large annotated datasets.13

CXR features indicative of pneumonia include new interstitial 
infiltrates, lobar consolidation, or cavitary lesions.14,15 The 
diagnostic criteria for pneumonia vary. The American 
Thoracic Society/ Infectious Diseases Society of America 
and the European Society for Clinical Microbiology and 
Infectious Diseases base diagnosis on clinical symptoms and 
CXR findings. The British Thoracic Society recommends CXR 
for all hospitalised patients when the diagnosis is unclear 
or the response to treatment is inadequate.16

These CXR analysis methodologies enable radiologists to 
work efficiently and accurately. However, manual X-ray 
analysis is labour-intensive, time-consuming, and prone 
to inaccuracies.17 An automated CXR recognition system 
can expedite the process and improve diagnostic accuracy. 
Researchers are currently developing reliable automated 
alternatives to address these challenges.18,19

Artificial intelligence (AI) has a significant potential to 
enhance medical and healthcare services globally. AI can 
improve the speed and accuracy of disease detection, 
including in screening. AI-powered radiography analysis, 
also known as computer-aided detection, introduces a new 
tool for evaluating CXR and is expected to have broader 
diagnostic applications.14,17,19–21 This study aimed to evaluate 
the application of AI in X-ray diagnostics for patients with 
COVID-19 in Kyrgyzstan. 

Materials and Methods 
This retrospective analysis was conducted at healthcare 
facilities in Kyrgyzstan and approved by the Bioethics 
Committee (Protocol No. 11, July 25, 2023), where 
study is conducted from June 2023 to October 2024. All 
participants provided signed informed consent. Initially, 
three radiologists from different clinics assessed the 
completeness, substance, and spirit of the chest X-ray 
reports for patients with pneumonia and healthy individuals. 
Subsequently, an advanced AI system was developed to 
detect COVID-19 pneumonia using digital X-rays. AI was 
then used to diagnose COVID-19 pneumonia. Finally, a 
comparative evaluation of the AI diagnostic results and 
the reports from the three radiologists was performed.

Radiologist Analysis
The average experience of the radiologists was 26.6 years. 
Each radiologist received digitised images of respiratory 
organs in the PNG format, with each image assigned a 
unique identification number to ensure research integrity 
(Figure 1). The radiologists worked independently without 
discussing their analyses. The study team adapted the 
template for describing respiratory organ radiographs. Non-
digital radiographs of inadequate quality were excluded 
to prevent interpretation errors.

Using a retrospective database of approximately 700,000 
X-ray images,22 this study employed a deep machine 
learning model to identify COVID-19 pneumonia in healthy 
individuals. Deep learning, especially Convolutional Neural 
Networks (CNN), is gaining traction in medical image 
processing because CNNs are highly effective in computer-
vision tasks.23

The web application was set up to provide access to the 
X-ray room of a primary healthcare facility in Kyrgyzstan. 

This study employed a neural network with a MedVit 
architecture (Figure 2).24 Vision transformer-based 
neural networks yield superior results in medical-image 
classification.22 The MedViT_large model, trained on 
multiple extensive open datasets of chest X-rays, ChestX-
ray8 (NIH, United States),25 CheXpert (Stanford University, 
United States),26 RSNA Pneumonia Challenge,27 and MIMIC-
CXR (MIT, United States),28 was used in all experiments.

X-ray images of patients with pneumonia and healthy 
individuals were selected based on the initial radiologist 
reports. The images were sourced from a clinic at the 
Bishkek Family Medicine Center, comprising 77 digital 
X-rays of confirmed COVID-19 pneumonia cases and 90 
from healthy patients (2021–2022).

We compared the AI-generated X-ray reports with 
radiologists’ interpretations of pneumonia and healthy 
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subjects. Both the AI and radiologists were evaluated under 
identical conditions, without additional clinical laboratory 
data. The results were recorded based on the criterion 
“pneumonia/ not pneumonia and without features/ with 
features.”

A web application was developed for model use and 
deployed on a server in a data centre. Users needed a 
personal computer with Google Chrome and at least 512 
Kbps Internet connectivity. The application was tested on 
Chrome versions 120 and above, requiring a minimum of 
4GB RAM for optimal performance.

Statistical analysis was performed using MedCalc software 
(version 22.021, MedCalc Software Ltd, Ostend, Belgium).29 
ROC curves were plotted, and the area under the curve 
(AUC) with 95% confidence intervals (CI) was analyzed. The 
Youden index was used to determine the optimal cutoff 
values, and the DeLong test was applied to compare the 
AUC values across models.30 Higher AUC values indicate 
better diagnostic performance.

Results

The AI performance in detecting pneumonia matched that 
of radiologists, demonstrating the predictive capability of 
machine analysis (Figure 2).

The ROC curves illustrate the performance of both 
radiologists and artificial intelligence. The data revealed 
that the areas under the curves for radiologists and AI 
were nearly identical, with all four scenarios showing high 
specificity and sensitivity.

This study calculated the ROC curve characteristics and AUC 
to assess diagnostic effectiveness (Table 1). Table 1 indicates 
that radiologists 1 and 2 had the highest AUCs, while doctors 
3 and AI had slightly lower AUCs. The substantial overlap 
in the CIs suggests that these differences are likely not 
statistically significant, as supported by the comparisons 
in Table 2. 

A similar conclusion can be reached from the analysis 
of the sensitivity and specificity of predictors. Table 3 
shows that although the specificities of all four predictors 
are similar, the sensitivity of AI is slightly lower but not 
statistically significant because of overlapping CIs with the 
other predictors. The Youden index was also computed 
based on the sensitivity and specificity values.

The Youden index values for all predictors are near one, 
indicating the high quality of all predictors, including AI.

Table 1.Characteristics of ROC Curves

Variable AUC SEa 95% CI

radiologist_1 0.923 0.0242 0.871–0.958

radiologist_2 0.931 0.0208 0.881–0.964

radiologist_3 0.892 0.0296 0.835–0.935

AI 0.916 0.0237 0.863–0.953

aDelong et al. 198830, AUC: Area Under the Curve, AI: Artificial 
Intelligence, SE - standard error, CI: Confidence IntervalFigure 1.Scheme of Processing Digital X-Ray 

Images by AI and Radiologists

Figure 2.Comparison of ROC Curves of Radiologists 
and AI
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Figure 3.Architecture of the MedVit Neural Network

radiologist_1 ~ radiologist_2

z-statistic 0.292

Significance level p = 0.7704

radiologist_1 ~ radiologist_3

z-statistic 1.137

Significance level p = 0.2557

radiologist_1 ~ AI

z-statistic 0.206

Table 2.Pairwise Comparison of AUC of ROC 
Curves

AI: Artificial Intelligence, *p > 0.05.

Significance level p = 0.8371

radiologist_2 ~ radiologist_3

z-statistic 1.148

Significance level p = 0.2508
radiologist_2 ~ AI

z-statistic 0.469
Significance level p = 0.6392

radiologist_3 ~ AI
z-statistic 0.653

Significance level p = 0.5135
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Discussion
In COVID-19 diagnostics, AI has significantly improved X-ray 
analysis, enhancing its accuracy and efficiency. Advanced AI 
systems using deep learning techniques effectively examine 
chest X-ray images to detect COVID-19 signs, offering a 
quick, non-invasive, and scalable diagnostic option, which 
is especially useful in resource-limited healthcare settings 
lacking conventional tools.31,32

AI systems show high accuracy in identifying COVID-19-
related abnormalities on chest X-rays, surpassing traditional 
evaluations by rapidly processing numerous images and 
alleviating radiologists’ workloads, thus speeding up 
decision-making.31,32 However, variations in image quality 
and symptoms similar to those of other respiratory illnesses 
present challenges that could affect AI performance. To 
address these issues, advanced texture-based classification 
models such as those using Gray-level co-occurrence 
matrix (GLCM) and wavelet transform methods have been 
developed to achieve better classification by utilising unique 
texture features in various datasets.32

Integrating AI into clinical protocols improves diagnostics by 
providing a reliable second opinion and boosting diagnostic 
confidence. AI tools can categorise cases by severity, 
enhance triage, and optimise resource use. Effective 
implementation requires resolving issues related to system 
compatibility, data protection, and user-friendliness, 
ensuring AI complements, rather than disrupts existing 
healthcare practices.31,33 In this study, we included the web 
application was set up to provide access to the X-ray room 
of a primary healthcare facility in Kyrgyzstan (Figure 3).

Challenges to widespread AI adoption in X-ray diagnostics 
for COVID-19 include the need for extensive, diverse, and 
high-quality datasets for proper training and validation of 
AI models. Biases can arise if the training data does not 
represent the full range of populations affected by the virus. 
Additionally, the lack of standardisation in AI methodologies 
and performance evaluation metrics hinders inter-study 
comparisons and complicates regulatory approval.32,34

AI use in healthcare also raises ethical and legal concerns 
such as patient data privacy and informed consent. 

Regulatory bodies must set clear criteria for assessing 
the safety and efficacy of AI-driven diagnostics and ensure 
compliance with standards before clinical deployment.33,35

Advancements in AI for X-ray diagnostics are driven 
by continuous model development and refinement. 
Collaboration among researchers, clinicians, and 
technologists is essential for creating comprehensive 
datasets and for improving model generalisability. Progress 
in explainable AI can build trust and acceptance among 
healthcare professionals by offering transparent insights 
into AI decision-making processes. 

This study assessed the efficacy of an AI system trained to 
detect pneumonia on chest X-rays, using real-world data. 
We observed occasional low-quality radiographs owing to 
variations among centres, such as differences in softness, 
hardness, and contrast, and some images had errors leading 
to incorrect patient positioning.

Previous studies on AI models for pneumonia detection in 
chest X-rays used a class decomposition method with a deep 
convolutional neural network (Detrac ResNet), achieving 
97.9% sensitivity on a small dataset.36–39 These methods 
require machine learning expertise, posing challenges for 
clinical applications.

This study analysed the interpretations of the three 
radiologists and compared them with the model’s 
performance. AI demonstrated strong predictive ability, 
with 88.31% sensitivity and 96.67% specificity, making 
it a potential tool for screening and triaging COVID-19 
pneumonia cases. The model is accessible to radiologists 
for uploading chest X-ray images and is trained with 
digital images stored in MicroDicom, the primary format 
in Kyrgyzstan, thus facilitating its use in resource-limited 
clinical settings. 

Conclusion
Emerging technologies in radiation diagnostics are 
promising for radiologists. Artificial intelligence (AI) benefits 
diagnostics by saving radiologists’ time and facilitating 
swift pneumonia treatment. Radiologists consider disease 
patterns, medical history, clinical data, and laboratory 

Table 3.Estimates of Sensitivity and Specificity of Predictors and Youden Index

Variable Sensitivity 95% CI Specificity 95% CI Youden Index Value

Radiologist 1 90.91 82.2–96.3 96.67 90.6–99.3 0.8758

Radiologist 2 96.10 89.0–99.2 91.11 83.2–96.1 0.8722

Radiologist 3 93.51 85.5–97.9 91.11 83.2–96.1 0.8462

AI 88.31 79.0–94.5 96.67 90.6–99.3 0.8498
AI: Artificial Intelligence, CI: Confidence Interval
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results in their decision-making. Collaboration between 
radiologists and AI can improve radiological reports for 
patients with COVID-19 pneumonia, especially in rural 
Kyrgyzstan with staff shortages. Future AI advancements 
will integrate clinical and laboratory data to enhance 
diagnostic precision.
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