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Introduction 
Malaria is a disease transmitted by mosquitoes that may 
be prevented and treated. Mosquito biting is stopped 
by the distribution of low-cost bed nets and sprays, as 
well as by mosquito abatement tactics such as sprinkling 
insecticide indoors and draining filthy water where vectors 
thrive.1 “Recent flooding in Africa and Asia has created a 
significant danger to environmental sanitation and clean 
water supply, allowing malaria and cholera to spread”.2 

John Snow was the first to examine cholera epidemiology, 
which paved the way for modern epidemiology study.3 The 
relationshi p between cholera and contaminated water has 
long been known. Cholera is a life-threatening bacterium 
infection that can cause vomiting and diarrhoea. It is spread 

by drinking water infected with the bacteria Vibrio cholerae 
(typically via faeces or wastewater) and can lead to “severe 
thirst, electrolyte imbalance, and death”, if not treated. 
Cholera colonisation by humans results in a super infectious 
condition that persists after transmission, contributing to 
epidemic illness. Good sanitation and water treatment can 
help prevent cholera.4 

Mathematical modelling has been useful in gaining a better 
understanding of disease transmission dynamics as well 
as in making decisions about disease control intervention 
techniques. Ross, for example, was the first to establish 
“Mathematical models of malaria transmission”.5 His major 
objective was vector management, and he established 
that the mosquito population must be decreased to a 

The mathematical model for co-infection with malaria and cholera was 
developed in this problem, and it was researched to see if there was a 
synergistic link between the two diseases in the presence of medicines. 
The effects of malaria and its treatment on cholera dynamics were 
investigated in greater depth. Malaria infection raises the chances 
of cholera, while cholera infection doesn’t really enhance the risk of 
malaria infection. The model was numerically investigated using the 
fourth-order Runge-Kutta method and analytically using the Homotopy 
Perturbation Method. The impact of each parameter on the governing 
equation was investigated and the effective control strategy was 
determined using the exact solutions (analytical).

Keywords: Malaria, Cholera, Co-infection, Homotopy Perturbation 
Method, Optimality Control of Disease
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certain level in order to eradicate the infection. Koella’s and 
Anita’s inquiries are among the others,6 Among them was 
a mosquito latent class. They evaluated various tactics for 
reducing “resistance spread and investigated the sensitivity 
of their findings to the parameters”. Anderson and May 
developed “a malaria model based on the assumption that 
acquired immunity is unaffected by exposure length in 
malaria”.7 The effect of disease prevalence on transmission 
rate, as well as other control methods, were explored 
further. Stilianakis et al. performed a thorough examination 
of a dynamic model to characterise HIV infection aetiology.8 
With vaccination and various endemic states, “A basic two-
dimensional SIS (susceptible-infected-susceptible) model” 
was created by Kribs-Zaleta and Vealsco-Hernandez.9 There 
has been no research on the dynamics of malaria-cholera 
co-infection or the deployment of optimal methods of 
control to our understanding. A deterministic framework 
for HIV and malaria co-infection in a population was recently 
constructed and tested by Mukandavire et al.10 Mtisi et al. 
also looked at a deterministic model for tuberculosis and 
malaria co-infection.11 Mushayabasa and Bhunu developed 
a simple mathematical model and comprehensively 
analysed it to assess whether HIV infection is associated 
with an increased risk for cholera or not.12 Nielan et al. 
developed a mathematical model for cholera that included 
key elements - “hyper-infectious, short-lived bacterial 
condition, a distinct class for mild human infections, and 
diminishing disease immunity”.13

Okosun. et. al.14 found that malaria infection may be 
associated with an increased risk of cholera but however, 
cholera infection is not associated with an increased risk 
for malaria.14 There have been significant mathematical 
modelling developments over the past eight years.15 Osman 
and Adu established the SEIR model in 2017, which was used 
to predict the reproduction rate, and the disease-free and 
endemic equilibria. Additionally, they created an SEIR-SEI 
model of how malaria spreads between people and insects. 
Insecticides, mosquito-treated nets, and active anti-malarial 
medications can all assist in reducing mosquito populations 
and the transmission of malaria, according to the study’s 
findings. Malaria can also be controlled by lowering the 
rate of human-mosquito interaction.

A historical review of the dynamics of malaria transmission 
and climate change was conducted in 2018 by Eikenberry 
and Gumel.16 They discussed the main biological facets of 
malaria, techniques for formalising these into mathematical 
forms, and uncertainties and debates surrounding 
appropriate modelling approaches. Their goal was to 
present a timeline of some significant modelling initiatives, 

ranging from the classic works of Sir Ronald Ross and George 
Macdonald to more contemporary modelling studies that 
specifically focused on climate. Last but not least, they 
made an effort to set this mathematical study into a larger 
historical framework for the “million-murdering death” 
of malaria.

A mathematical model of malaria transmission dynamics 
with age structure for the vector population and a regular 
bite rate of female Anopheles mosquitoes was presented 
in 2018 by Bakary et al.17 They examined the model’s 
behaviour when the fundamental reproduction ratio R0 was 
more than one or less than one, as well as the stability of the 
disease-free equilibrium. In 2018, Koutou et al. presented 
a model, constructed by considering two models: a model 
of vector population and a model of virus transmission.18 
Each model’s threshold dynamics were identified, and a 
correlation between them was created. The Lyapunov 
principle was additionally used to investigate the stability 
of equilibrium points. The next-generation matrix was 
used to calculate the common basic reproduction number, 
and its implications for the management of malaria were 
examined. 

In 2020, Hntsa and Kahsay took into account a mathematical 
model for the dynamics of cholera transmission and its 
countermeasure as one cohort of people.19 They estimated 
the fundamental reproduction number R0 and looked 
into the possibility of equilibria as well as their stability. 
According to the findings, the disease is eradicated and 
kills fewer people in places with appropriate preventive 
measures while becoming widespread and killing more 
people in areas with insufficient preventive measures. In 
2020, Egeonu et al. conducted an analysis to determine 
how treatment controls affected a population’s disease 
burden when there was drug resistance to malaria.20 When 
the related reproduction number is smaller than unity, the 
dynamic feature of backward bifurcation is demonstrated 
to occur in the model. Pontryagin’s Maximum Principle 
was used to establish the prerequisites for the existence of 
optimum control and the optimality system for the model. 
The study of a novel non-linear mathematical model for 
malaria disease was proposed by Ibrahim et al. in 2020.21 
Using the fundamental reproductive number R0, local 
and global stability analysis of a disease-free equilibrium 
was investigated; if R0 < 1, the system is stable; else, it is 
unstable. Under specific circumstances, the existence of 
a special endemic equilibrium was also established. The 
findings of this study demonstrate that in addition to a 
decline in the population of infected mosquitoes, a sizable 
increase in the population of susceptible humans has been 
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observed. A non-linear mathematical model was proposed 
and used in 2020 by Baihaqi and Adi-Kusumo to analyse the 
dynamics of malaria transmission in a population.22 Utilising 
differential equation stability theory, the deterministic 
compartmental model was investigated. The reproduction 
number was asymptotically stable for the disease-free 
conditions, and the endemic equilibria were identified. In 
addition, the qualitatively assessed model incorporated 
time-dependent variable controls that were intended to 
stop the spread of the malaria disease. Incorporating three 
control strategies—disease prevention with bed nets, 
treatment, and insecticides—the optimal control problem 
was formulated using Pontryagin’s maximum principle. A 
mathematical model of malaria in the human population 
was considered in 2020 by Baihaqi and Adi-Kusumo,22 
who made the assumption that the disease’s infection 
rate in the population is constant and only depends on 
the number of infected people. The existence of endemic 
and disease-free equilibrium points, as well as the local 
stability for both equilibrium points and the global stability 
for the disease-free equilibrium point, were also the focus 
of their analysis.

In 2021, Ndamuzi and Gahungu created the SEIR model 
and discovered the fundamental reproduction number R0.

23 
This model’s findings demonstrated the need for effective 
control measures to decrease the number of mosquito bites 
on humans per unit of time (σ), the vector population of 
mosquitoes (Nv), the probability of infection for a person 
bitten by an infectious mosquito per unit of time (b), and 
the probability of infection for a mosquito per unit of 
time (c). The new fourteen-compartmental mathematical 
model was defined by Adeniran et al. in 2022.24 In an 
effort to pinpoint the most sensitive factors, the model 
was examined for each factor influencing the spread of 
the illness. Full models of the co-infection of malaria and 
cholera were studied first, followed by sub-models of the 
two diseases separately. The relative sensitivity solution 
of the model was calculated for each parameter.

A fractional order model of the co-infection of malaria 
and cholera was developed in 2022 by Shah et al. using 
the definition of the Caputo fractional derivative with 
the order of derivative in the range (0,1).25 The fractional 
order model has been shown to produce superior results. 
For malaria and cholera models, the basic reproduction 
number was calculated. Sinan et al.26 started to look at 
the dynamics of malaria illness in humans in 2022, as well 
as the disease’s vectors. It was also considered how the 
vector’s (the mosquito) role in disease transmission might 
play a role. Ulam-Hyres stability analysis and optimal control 
strategies have been used in some theoretical analyses 
of existence, uniqueness, and stability. Different graphs 

show the results of fractional and classical order, and 
some numbers are shown to show the model’s overall 
asymptotic stability. Finally, we have made an attempt 
to investigate the mathematical analysis of Malaria and 
cholera disease by HPM.14

Model Formulation
Humans who are susceptible ( ), individuals only infected 
with malaria ( ), individuals only infected with cholera 
( ), individuals only recovering from malaria ( ), and 
individuals only recovering from cholera alone ( ) are all 
sub-populations of the overall human population, denoted 
by . As a result,  vector population, , is 
separated into susceptible mosquitoes  and malaria-infected 
mosquitoes . As a result,  = 

Cholera Model
We will look at the cholera-only model here.14

                                                                                                           (1)
                                                                                                                (2)

                                                                    (3)           

                                                                              (4)                                                           

With the initial condition 

The analytical solution of the cholera model is obtained by 
the Homotopy perturbation method (HPM).

                         (5)
   (6)

                                              (7)

                                                          (8)     
Malaria Model
We will look at the malaria-only model here.14

                                                                          (9)

                                          (10)

                                                    (11)

                                                                                                  (12)

                                                                                                 (13)

With the initial condition,

The analytical solution of the malaria model is obtained 
by HPM.
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Parameter Description Value
Human birth rate 0.001

Malaria immunity waning rate 0.01

Probability of humans getting infected 0.034

Natural death rate in humans 0.00004

Recovery rate of malaria-infected individual 0.001369

Malaria related death 0.01
Mosquitoes birth rate 0.01

Probability of mosquitoes getting infected 0.09

Table 1.Parameters and Their Values of Optimal Malaria - Cholera Model14
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Numerical Simulation and Discussion 
Cholera Model
To observe the model system’s dynamic behaviour, using 
the fourth-order Runge–Kutta method and the following 

Figure 1.Variation in Number of Susceptible Humans with Change in Bacteria Contact with Humans 

parameters, the systematic Equations 1–4 were numerically 
computed:14

 with the Innitial Condition

Natural death rate in mosquitoes 0.06667

Cholera immunity waning rate 0.001

Bacteria contact rate with humans 0.05

Recovery rate of cholera-infected individual 0.07

Cholera-infected contribution to the aquatic 0.7

Bacteria mortality rate 0.123

Cholera-related death 0.02407



62
Kumar PNV et al.
J. Commun. Dis. 2024; 56(1)

ISSN: 0019-5138 
DOI: https://doi.org/10.24321/0019.5138.202410

Figure 2.Variation in Number of Susceptible Humans with Change in Human Birth Rate 

Figure 4.Variation in Number of Cholera-infected Individuals with Change in Recovery Rate of
Cholera-infected Individuals 

Figure 5.Variation in Number of Cholera-infected Individuals with Change in Bacteria Contact Rate with Hu-
mans 
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Figures 6.Variation in Number of Cholera-infected Individuals with Change in Cholera-related Deaths (m)

Figures 7.Variation in Number of Cholera-infected Individuals with Change in Values of Natural Death Rate in 
Humans (µh)

Figure 8.Variation in Number of Recovered Cholera Cases with Change in Recovery Rate of
Cholera-infected Individuals 
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Figure 9.Variation in Number of Recovered Cholera Cases with Change in Natural Death Rate in Humans (µh)

Figure 10.Variation in Number of Recovered Cholera Cases with Change in Cholera Immunity Waning Rate 

Figure 11.Variation in Bacteria Population with Change in Bacteria Mortality Rate (µb)
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Figure 12.Variation in Bacteria Population with Change in Cholera-infected Contribution to the Aquatic 

Figure 13.Variation in Number of Susceptible Humans 
with Change in Probability of Humans getting Infect-

ed 

Figure 14.Variation in Number of Susceptible Hu-
mans with Change in Human Birth Rate 

Conclusion Derived from the Cholera Model
Figures 1 and 2 show the analytical and numerical 
simulation comparison of the parameters  and . By 
increasing the value of  (0.09, 0.5, and 0.9), the number 
of susceptible humans was found to decrease. As shown 
in Figure 2, increasing the values of  led to an increase in 
the number of susceptible humans. Similarly, susceptible 
humans increased in number with an increase in cholera 
immunity waning rate (0.001, 0.009, and 0.05) (Figure 3). In 
Figure 4, it is shown that an increase in δ (0.00004, 0.009, 
and 0.05) led to an increase in the number of cholera-
infected individuals. As shown in Figure 5, the number of 
cholera-infected individuals reached a high level when the 
value of  was changed to 0.5.

As shown in Figures 6 and 7, the number of cholera-infected 
individuals decreased when the cholera-related death rate 
increased from 0.02407 to 0.099 and when the natural death 
rate in humans ( ) increased from 0.00004 to 0.05. Figures 
8–10 show the variation of the number of recovered cholera 
cases with changes in the recovery rate of cholera-infected 
individuals (δ), natural death rate in humans ( ), and change 
in cholera immunity waning rate (ω), respectively. Figures 11 
and 12 reveal the changes in the bacteria population with 
changes in bacteria mortality rate (μb) and cholera-infected 
contribution to the aquatic (ρ), respectively.

Malaria Model
The numerical computation of the systematic Equations 
9–13 using the fourth-order Runge–Kutta method with 
the following parameters was used to see the dynamic 
behaviour of the model system:14

 with the initial condition.
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Figure 15.Variation in Number of Susceptible Humans with Change in Natural Death Rate in Humans (µh)

Figure 16.Variation in Number of Malaria-infected Individuals with Change in Recovery Rate of 
Malaria-infected Individuals ( )

Figure 17.Variation in Number of Malaria-infected Individuals with Change in Natural Death Rate in 
Humans (µh)
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Figure 18.Variation in Number of Recovered Malaria Cases with Change in Malaria Immunity Waning Rate (k)

Figure 19.Variation in Number of Recovered Malaria Cases with Change in Recovery Rate of 
Malaria-infected Individuals 

Figure 20.Variation in Number of Recovered Malaria Cases with Change in Natural Death 
Rate in Humans (µh)
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Conclusion Derived from the Malaria Model
Figures 13–15 show the change in the number of susceptible 
humans with changes in the value of βh (0.034, 0.079, and 
0.0999), Ʌh (0.001, 0.005, and 0.009), and µh (0.00004 and 
0.00009), respectively. 

Figures 16 and 17 indicate that the numbers of malaria-
infected patients changed with respect to the recovery 
rate of malaria-infected individuals (α) and the natural 
death rate in humans (μh), respectively. Figures 18–20 
show the recovery rate of malaria with respect to the 
malaria immunity waning rate (k), recovery rate of malaria-
infected individuals (α) and natural death rate in humans 
(μh), respectively. Figures 21 and 22 explain the variation 
of susceptible mosquitoes with respect to the probability 
of mosquitoes getting infected (βv) and the natural death 
rate in mosquitoes (μv).

Conclusion
A comprеhеnsivе mathematical analysis of the Malaria 
Cholera model using HPM has been presented in this 
research. The study is еxtеndеd to the discussion of 
optimal control strategies for the Malaria Cholera model 
by presenting various parameter variation graphs. Both 
the linear and non-linеar diffеrеntial еquations inhеrеnt 
in thе Malaria Cholеra modеl wеrе systеmatically solvеd 
utilising both numеrical mеthods and analytical approachеs. 
Employing thе MATLAB odе45 function and thе gеnеratеd 
numеrical rеsults dеmonstratеs a notablе consistеncy 
with thе analytical solutions obtainеd through HPM. This 
convеrgеncе rеinforcеs thе reliability and validity of our 
mathеmatical analysis in undеrstanding thе Malaria Cholеra 
modеl.

Figure 21.Variation in Number of Susceptible Mosquitoes with Change in Probability of 
Mosquitoes Getting Infected 

Figure 22.Variation in Number of Susceptible Mosquitoes with Change in Natural Death
 Rate in Mosquitoes (µv)
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