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Alphaviruses of the family Togaviridae are mostly arboviruses with 
worldwide distribution and are maintained in nature by reservoir hosts 
and mosquitoes in an enzootic cycle. Spillover events occur in the 
form of local outbreaks or epidemics involving human beings. These 
may cause arthritis or encephalitis which might be fatal. We have 
comprehensively reviewed the structure of the human pathogenic 
alphaviruses with the functions of individual proteins, and the life cycle 
events of alphaviruses with a special emphasis on the difference in 
these events in the case of vectors and hosts, and diseases produced 
by them along with the pathogenesis. Molecular-level studies of these 
viruses, the phylogenetic evolutionary events, and various measures 
being taken to prevent or control the infections caused by these 
viruses in humans are also discussed in this review article. The recent 
outbreaks of alphaviral infections demand in-depth knowledge of 
virus-host interaction at the molecular level and the development of 
better drugs to control the infections.  
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Introduction
Viruses, the obligate intracellular parasites, are of various 
types depending on the nature of their genetic material 
(genome) like RNA viruses (single-stranded or double-
stranded), DNA viruses, or retroviruses. They rely on 
host cellular machinery to replicate and synthesise viral 
components. The newly identified viruses differ in their 
pathogenicity and may be responsible for illnesses ranging 
from mild to serious.1 Viruses can be transmitted in various 
modes through vectors, e.g., mosquitoes, ticks, fleas, or 

through air, water, food, fomites, blood transfusion, close 
contact such as sexual transmission etc.2 A majority of 
alphavirus species have been reported to infect mammals 
as well as birds. The carrier organism responsible for the 
spread of alphaviruses is the mosquito.3 Alphaviruses 
commonly pathogenic to human beings are Barmah 
Forest Virus (BFV), Chikungunya Virus (CHIKV), O’nyong-
nyong virus (ONNV), Sindbis Virus (SINV), Semliki Forest 
Virus (SFV), Ross River virus (RRV), and Mayaro virus 
(MAYV). They cause febrile illness with rash and arthritis. 
Encephalitis-causing alphaviruses are Venezuelan equine 
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encephalitis virus (VEEV), Eastern Equine Encephalitis Virus 
(EEEV), and Western equine encephalitis virus (WEEV). 
Alphaviruses can be divided into two groups based on their 
geography (origin), severity of infection, and mechanism 
of infecting the host. The two groups are called new-world 
alphaviruses and old-world alphaviruses. Viruses like SINV, 
SFV, and CHIKV that use nsP2, one of the non-structural 
proteins (nsP) to downregulate host transcription, cause 
arthralgia, and have low mortality rates, come under the 
group old-world viruses. The new-world group of viruses 
downregulates the host cell transcription with the use of 
their Capsid Protein (CP) causing more fatality. This group 
includes viruses like VEEV and WEEV, which are major 
causes of sleeping sickness.4 Another classification is based 
on antigenic cross-reaction. The two glycoproteins E1 
and E2 form the basis of various serological tests.5 There 
is a risk of future outbreaks of these viruses in different 
geographical areas due to the adaptation of these viruses 
to different mosquito vectors even with a single mutation 
(e.g., CHIKV IOL lineage with mutation E1-A226V adapted 
to a new vector Aedes albopictus, which is prevalent in 
cooler geographical areas in contrast to Aedes aegypti). So, 
to prevent such outbreaks and develop better preventive 
and therapeutic strategies against alphaviruses, there is 
a need to review these viruses in detail.    

Structure of Alphavirus and Functions of Its 
Various Components
Structure

Alphaviruses have an icosahedral structure, approx. 70 nm 
diameters and a 5’capped and 3’ polyadenylated genome. 
Alphavirus particles show a Svedberg coefficient of 280S 
and a buoyant density of 1.15–1.22 g/cm3 in a sucrose 
gradient.6 The viral genome ranges from 9.7 to 12 kb in 
length with an intergenic sequence connecting two Open 
Reading Frames (ORFs).7,8

In most of the alphaviruses, out of the two ORFs, 5’ ORF (7 
kb) encodes a polyprotein consisting of four non-structural 
proteins namely nsP1, nsP2, nsP3, and nsP4, which are 
involved in a replicative complex. The sub-genomic RNA 
(26s) of 4 kb encodes for an organisational protein, which 
is divided to form E1, E2, E3, Capsid (C), and 6k/TF as 
shown in Figure 1, interacting to form a virion envelope.8 
The surface of the virion particle has 80 trimeric spikes of 
heterodimers of E1 and E2 glycoproteins.9 The positive 
sense single-stranded RNA genome of SINV allows a 
relatively large genome packaging capacity for proteins 
up to 5 kb.10 WEEV is a hybrid with sequences derived 
from the Sindbis virus.11 In VEEV, there are five structural 
proteins, which are considered as main targets for the 
acquired immune system.12

Figure 1.Event of Viral RNA Translating into Non-structural and Structural Polyproteins During the Early and 
Late Phases of Infection. The Non-structural Polyprotein is further Processed into Various Non-structural 

Proteins (nsP1, nsP2, nsP3 and nsP4) and Structural Polyprotein is Cleaved into Capsid Protein (CP), 6K, and 
Envelope Glycoproteins (E1, E2, and E3).7
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Functions
Non-Structural Proteins

Non-structural protein nsP1 is the major anchor protein 
of the replication complex and has guanine-7-methyl 
transferase (MTase) and guanylyl transferase properties 
required to enclose the viral RNA.13 nsP2 has RNA helicase 
activity and acts as a viral protease for non-structural 
polyproteins.14 nsP2 has a methyl transferase-like domain15 
in addition to its helicase and protease activity. It also 
obstructs the synthesis of host cellular macromolecules, 
thereby hindering various antiviral responses.16 Non-
structural protein, nsP3 , is essential for the function of 
RNA replicase although its function needs to be explored 
further.17 GDD motif in nsP4 suggests that it has RNA 
polymerase function.18

Structural Proteins
Structural proteins capsid comprises three domains. 
Domain I (1–80 amino acids), in association with domain 
II (81–113 amino acid residues), helps genomic RNA and 
domain III (114–264 residues) in proper folding. Domain 
III of capsid protein has serine protease activity of CP.19 
Another important protein among structural proteins is 
6k. It is a protein with a molecular weight of 6000 Da. 
About 30 copies of 6K are incorporated into virions20 which 
perform palmitoylation at conserved cysteine residues, 
leading to the formation of infectious particles.21 Dey et 
al. reported the structure of the 6K protein of CHIKV for 
the first time using techniques like electrophysiology, 
confocal and electron microscopy, and molecular dynamics 
simulations and found it to be an ion channel-forming 

protein.22 E3 protein helps in efficient particle assembly 
and mediates spike folding and activation; E1 protein 
initiates the interaction between viral and host endosomal 
membrane; and E2 is responsible for interaction with host 
cell receptors.7

Hosts and Vectors of Alphaviruses
The spread of most alphavirus infections between the hosts 
is carried by a mosquito, except the Buggy Creek virus and 
the Southern elephant seal virus. The vectors for these 
two viruses are swallow bugs and seal lice, respectively.23 
The primary vectors for SINV reported in Finland were 
culex and culiseta, whereas grouse and passerines were 
the amplifying hosts in northern Europe. Migratory birds 
might also be playing a role in spreading the disease.24

ONNV is transmitted by Anopheles gambiae or Anopheles 
funestus, with humans thought to be the only natural 
hosts. Heat shock cognate 70B protein of mosquitoes 
has been reported to suppress the replication of ONNV, 
so these mosquitoes act as asymptomatic vectors.25 
The most common mosquitoes transmitting RRV are 
Ochlerotatus vigilax, Ochlerotatus camptorhyncus, and 
Culex annulirostris.26 The main vertebrate hosts for RRV 
are non-migratory macropods like kangaroos, wallabies, 
New Holland mice, and flying foxes.27 The first isolation 
report on BFV from vector Culex annulirostris came in 
1974 in the state of Victoria in Barmah Forest and from 
southwest Queensland Australia simultaneously.28,29 MAYV 
in forest areas is transmitted by the mosquitoes of genus 
Haemagogus, but it can also be transmitted by Aedes 
aegypti making it a potential threat to the health of people30 
shown in Table 1.

Table 1.Hosts, Vectors and Diseases related to the Alphaviruses

Name of Alphavirus Natural/ Reservoir Host(s) 
(Confirmed/ Putative)

Common Vectors 
(Confirmed/ Putative) Diseases in Humans

Barmah Forest Virus 
(BFV)

Brushtail possums,
horses 

Culex annulirostris,
Aedes vigilax29 Fever, rash, myalgia, arthritis

Chikungunya Virus 
(CHIKV)

Baboons, Cercopithecus 
monkeys

Aedes aegypti, Aedes 
albopictus31

High fever, severe joint
pains, chronic recurrent 

polyarthralgia

Eastern Equine 
Encephalitis Virus 

(EEEV)
Birds,27 horses Culiseta melanura32 

Encephalitis, muscle pain, 
fever

Mayaro Virus (MAYV) Marmosets33 Heamagogus
janthinomys34

Self-limited dengue-like 
illness along with long-lasting 

arthralgia

O’nyong-nyong Virus 
(ONNV) Not known Anopheles funestus, 

Anopheles gambiae35

Fever, rash, polyarthritis 
(weakness of joints), 
lymphadenitis etc.
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The reported vector for EEEV is Culiseta melanura 
maintaining a bird-mosquito-bird cycle,25 and a possible 
bridge vector is Ae. vexans31. The vector for WEEV is 
primarily Culex tarsalis. A cycle of wild birds and mosquito 
infectivity is maintained, with mosquitoes acting as vectors 
and birds as reservoirs.11

Transmission of Alphavirus between Host and 
Vector
After a blood meal, the alphavirus in mosquito vector 
interacts with the mid-gut epithelial cells, enters into 
the cells via a receptor-ligand interaction,14 replicates 
there, and escapes into the haemolymph (Figure 2) from 
where it can reach other tissues. The importance of the 
E2 glycoprotein of the virus in this interaction was evident 
when a SINV strain MRE16 infected the Aedes aegypti 
mosquito efficiently after a blood meal, but its variant 
i.e., MRE16sp (sp-small plaque) was found to poorly infect 
the mosquito after a blood meal. Genomic sequencing of 
both these types indicated deletion of 90 nucleotides in E2 
glycoprotein spanning the 3’ end of the coding region for 
putative cell receptor binding domain (CRBD) in MRE16 sp. 
Infectious clones were prepared with or without deletion 
or with partial deletion to understand the role of this 
deletion and a reduced midgut infection and a lower spread 
of infection in Aedes aegypti were reported from deletion 
mutants but intrathoracic inoculation led to the production 
of similar viral titers with all clones in the mosquito. This 
was indicative of the important role of E2 CRBD in MRE16 
in mid-gut infectivity in Aedes aegypti.14 On reaching the 
salivary glands, it replicates and can be transmitted into a 
vertebrate host through the saliva of the vector.42,43

Mosquito saliva containing enough virus particles transmits 
the virus during feeding by enhancing vasodilation and 
preventing blood coagulation in the host.44 SFV was 
inoculated subcutaneously alone and also with mosquito 
bites of Aedes aegypti in a mouse model. The bite had a 
significant impact on enhancing virus replication probably 
due to delayed innate immune activation, neutrophil influx, 
and late response of bite-associated genes; although there 
was no effect on skin antiviral immune response.45

Ross River Virus (RRV) Marsupials like kangaroos, 
wallabies, New Holland 

mouse, flying fox27

Aedes vigilax, Aedes 
camptorhynchus, Culex 

annulirostris, Aedes 
notoscriptus36

Arthritis, rash, lymphadenitis

Semliki Forest Virus 
(SFV) Horses, monkeys

Aedes abnormalis 
group, Aedes 

argenteopunctatus,37 
Aedes africanus, Aedes 

aegypti38

Mild disease in humans (used 
as a model virus for research)

Sindbis Virus (SINV) Birds
Culex torrentium, Aedes 

cinereus, Culiseta 
morsitans39

Arthralgia, fever and rash

Venezuelan Equine 
Encephalitis Virus 

(VEEV)
Rodents, birds, horses Culex taeniopus, Aedes 

taeniorhynchus40

High fever, headaches, fatal 
for immunocompromised 

individuals

Western Equine 
Encephalitis Virus 

(WEEV)
Birds, humans, horses Culex tarsalis41

Rare, Western equine 
encephalitis

Figure 2.A Diagrammatic Representation of 
Alphavirus Entering and Leaving the Mosquito 

(Vector) (A: Epidermis, B: Dermis, C: Skin of the 
Host, D: Virus Particle Entering the Blood Meal 
of Mosquito, E: Virus Particle Entering the Host 

through the Saliva of Mosquito, F: Salivary Gland, G: 
Midgut Epithelium, H: Blood Meal, I: Basal Lamina, J: 

Haemocoel, K: Virus Particle)
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Life Cycle of Alphavirus 
Attachment of Virus to Host Cell Receptors

The virus induces its attachment to the host cell receptors 
via E1 and E2 glycoproteins.46 Various receptors have been 
reported including divalent metal ion transporter natural 
resistance-associated macrophage protein (dNRAMP) in 
Drosophila cells and adult flies and NRAMP2 in mammalian 
cells (SINV),47 Laminin receptors (SINV) in mammalian and 
mosquito cells48 and heparan sulfate proteoglycan49,50. 
SFV and RRV use dendritic cell-specific ICAM-3-grabbing 
non-integrin (DC-sign)51 and collagen-binding alpha1 beta1 
integrin respectively. E2 glycoprotein is a highly conserved 
host cell recognition protein among various species of 
alphaviruses. Their unique properties include ubiquitous 
nature, species tropisms, and expression of proteins like 
NRAMP2.48

Entry and Release of Nucleocapsid

Binding with the receptor is followed by endocytosis in a 
clathrin-dependent manner52 as shown in Figure 3, except 
for MAYV using caveolin-coated pits53. Low pH levels of the 
endosome induce the expression of the fusion peptide of E1 
and virion’s structural rearrangement.54 The entry of fusion 
peptide into an endosomal membrane helps nucleocapsid 
(NC) to enter into the cytoplasm. The viral RNA is reported 
to assemble viral replicase complexes on lysosomal and 
endosomal membranes.55,56 After the initial processing of 
non-structural polyprotein, P123 + nsP4, and nsP1 + P23 
+ nsP4 form early replication complexes responsible for 
synthesising negative-strand RNA.57 The last cleavage event 
at the P2/3 junction forms mature nsPs, which form positive 
strand replication complexes along with host cell proteins. 
The synthesis of the minus-strand marks the initial stage of 
infection, followed by the synthesis of sub-genomic RNA 
and a plus-strand9 as shown in Figure 3. 

Figure 3.A Diagrammatic Representation of the Events during Alphaviral Infection of Vertebrate Host 
Cells 
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Formation, Transport, and Budding of Viral 
Particles
Translation of structural proteins occurs from sub-genomic 
RNA. Capsid protein gets cleaved from the structural 
polyprotein co-translationally8 and then a full-length viral 
RNA along with NCs assembles from 120 dimers of capsid 
proteins,58 and E1, pE2 (E2 precursor protein), and 6K enter 
the plasma membrane via a secretory pathway after exiting 
the endoplasmic reticulum (Figure 3). The cleavage of pE2 
into E2 and E3 with the help of furin initiates viral infection.59 
NCs’ interaction with the cytoplasmic domain of E2 helps 
it to get enclosed by E1/ E2 icosahedral structure.7 6K 
protein forms cation-selective ion channels in mammalian 
host cells.60 Jose et al. have reported live cell imaging and 
electron microscopic analysis of replication complexes to 
study the life cycle of alphavirus.61

Diseases Caused by Alphaviruses
WEEV, EEEV, and VEEV can produce lethal encephalitis in 
horses and humans with variable progression of the disease. 
The overall case-fatality rate of WEEV is 4%.11 EEEV infection 
is responsible for very few cases per year in the US, with 
encephalitis cases showing high mortality (30%–70%) and 
neurological sequelae in survivors.62,63 An epizootic disease 
is mostly produced by VEEV with 1% mortality. 

Arthritogenic alphavirus infection leads to fever, skin rash, 
myalgia, and arthralgia.64 A case of fatal SFV neurovirulent 
laboratory strain causing meningoencephalomyelitis and 
the death of a laboratory worker has been previously 
reported.65 Avirulent strains cause non-lethal demyelinating 
disease for about 30 days.66 ONNV infection is characterised 
by fever, symmetrical polyarthralgia, lymphadenopathy, 
maculopapular rash, joint pains, redness and pain in the 
eyes, and general malaise (usually self-limiting).67 BFV 
causes disease just like RRV  but with milder symptoms. 
BFV is also a pathogen of public concern.68

Pathogenesis of Disease in the Susceptible 
Vertebrate Host
The pathogenesis of the alphaviral diseases in humans 
can be attributed partly to the direct cytopathic effects of 
the virus particles invading the host cells and partly to the 
inflammatory and immune responses generated because of 
the alphavirus infection. Studies in SFV-infected adult mice 
have shown the ability of alphavirus to cross the blood-brain 
barrier and have confirmed their presence in endothelial 
cells of the brain.69 These viruses are also reported to spread 
through infected blood cells, like leukocytes, monocytes, 
and WBCs or through olfactory neuroepithelium, tooth pulp 

and subsequent spread through trigeminal nerve.70 It has 
been reported that mutation of E2 glycoprotein at position 
55 where glutamine is replaced by arginine reduces the 
neuroinvasive capacity while a single amino acid, Thr at 
position 538 in nsP1 protein was vital for neurovirulence 
in adult mice replacing threonine with isoleucine at this 
position in nsP1 attenuated neurovirulence.71 In RRV 
disease, a cell surface marker F4/80 for monocytes and 
macrophages at the peak time of the disease with decreased 
viral titers pointed to the role of macrophages in damaging 
the muscle tissue.72,73 In new-world alphavirus encephalitis, 
various regions of the brain show symmetric or asymmetric 
lesions.74 

Basis for Maintenance of Infectivity in Mosquito 
Vector
The basic difference in the virus entry into the invertebrate 
(insect) cell is that the virus envelope fuses with the plasma 
membrane leading to penetration and uncoating of virus 
particles rather than endocytosis as seen in vertebrate 
cells and is proved by an experiment using WEEV and three 
strains of Culex tarsalis.75 Alphavirus protein interaction 
with cellular factors is indicative of different activities 
in vertebrate and invertebrate hosts as proven using 
engineered viruses with tagged non-structural proteins.76 
Virus maturation can occur in different ways in cultured 
insect cells. It can be very similar to the process in the 
cultured vertebrate cells, with budding on the cell surface 
and nucleocapsid inside the cytoplasm or the budding 
at the cell surface as observed in a few cells.77 In Aedes 
albopictus cell populations, clones of individual cells differed 
in producing virions. Cells producing lower yields did not 
show cytopathic effects and maintained their function in the 
presence of virus replication, suggestive of the maintenance 
of infective virus particles in the mosquito cells during the 
interepidemic period.78 The whole insect shows no harmful 
effects of virus infection and passes the virus transovarially 
to their offspring, whereas vertebrate cells show cytopathic 
effects on alphavirus infection due to shut shutdown of the 
transcription and translation machinery.79 

Molecular Studies of Alphaviruses
Certain experimental studies have revealed the importance 
of point mutation in the genome sequence of alphaviruses, 
which might be responsible for attacking the immune 
system of the host organism inducing an immune response. 
Genes sequence analysis of SINV strain S.A.AR86 along with 
three mutant strains showed a single point mutation in E2 
glycoprotein where asparagine replaced serine in the native 
strain. Mutant virions contained pE2 rather than E2 and lost 
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the ability to bind to R6 and R13 E2-specific monoclonal 
antibodies.80 The importance of a stop codon in altering the 
level of infectivity of alphaviruses was revealed in a study 
for the first time indicating the functional significance of 
the Opal stop codon in the ONNV genome on the infectivity 
of virus in a natural mosquito host (Anopheles gambiae). 
Mutants were created with point mutations replacing 
arginine between nsP3 and nsP4 with stop codons, i.e., 
opal, ochre, or amber. Mutant having stop codon opal 
upstream of nsP4 increased the infectivity of ONNV to 
double compared to the normal virus strain having arginine 
at the corresponding position.42 To understand the events 
during the budding of the virus particles, a pseudoatomic 
model of SINV was constructed at 7 Ångström resolution 
with a focus on the sites of interaction between CP and 
transmembrane E1 and E2 glycoproteins. Three contact 
regions between the cytoplasmic domain of E2 (cdE2) and 
CP were identified, which are important for virus assembly.81

The functional importance of glycoprotein E3 was explored 
by constructing chimeric viruses with E3 protein swapping 
between alphavirus species belonging to the same clade and 
between species belonging to different clades. Intraclade 
chimaeras produced infectious viruses at the same rate 
as the parent virus, whereas the rate was reduced for 
interclade chimaeras.82 To study the infection pattern in 
Anopheles gambiae, the vector was infected in vitro. The 
experiment showed that the increase in infection was 
controlled by the nsP3 region similar to the wild-type 
ONNV. In chimaera, when nsP3 of ONNV replaced the nsP3 
region from CHIKV, the infection rate in Anopheles gambiae 
increased from 0% to 63.5%.83 The role of Sorting Nexin 5 
(SNX5), a host factor, in the replication of alphaviruses was 
reported. Also, virions expressed in all host cells showed 
the presence of SINV nsP2.84

Phylogenetics
A phylogenetic analysis of alphaviruses was performed to 
discover their origin. The phylogenetic trees of alphaviruses 
constructed by including E1 and E2 genes were very 
different from the ones constructed according to non-
structural gene sequences. Phylogenetic analysis based on 
the E1 gene tree shows that new-world viruses like WEEV 
have extended from old-world virus complexes like SINV. 
Another phylogenetic study had shown an independent 
divergence of EEEV and VEEV species and no relation to 
old-world virus complexes like SFV, CHIKV, and RRV.85

Phylogenetic analysis has evaluated the genetic 
distinctiveness of Venezuelan alphaviruses which were 
isolated between the years 1973 and 1999. Studies showed 
the dominance of the VEEV subtype IAB strain a decade 
after an epidemic took place. Faragher and Dalgarno 
identified RRV of three genetic types with each having 
two subtypes with no link to the source i.e., host/ vector or 
geographical origin.86 A lot of variations were found in the 
3’ untranslated regions of the sequences of RRV belonging 
to three genetic types. Genome-scale phylogenetic analysis 
of RRV revealed that the lineages diverged from a common 
ancestor 94 years ago. The findings did not support the 
earlier geographic distribution. Further genomic sequencing 
from a wide spatiotemporal range was suggested to monitor 
the evolution of RRV.87 The phylogenetic analysis revealed 
a slow evolution of EEEV and its constant presence and 
transmission among the animals in Florida. The virus 
possessed tenacity with high genetic divergence.88 Although 
studies on phylogenetic analysis of alphaviruses are being 
conducted, there is a need to understand the basis of 
this evolution by comparing the codon and AA usage in 
alphaviruses and their respective hosts and vectors.

Epidemiology of Alphaviruses
In August 2004, the CHIKV infection was transmitted 
by Aedes mosquitoes in tropical Africa and Asia.89 In 
2015, at least 25,000 suspected cases and almost 3,500 
laboratory-confirmed cases of CHIKV were reported in 
India, and in 2018–2020, the number of suspected cases 
rose to 170,000 with 27,120 confirmed cases in India. 
Outbreaks of CHIKV were reported in 2017 in Bangladesh 
and Pakistan, in 2019 in Myanmar, and in 2018–2020 in 
Thailand. Most of these outbreaks were due to Aedes 
aegypti-adaptive mutations in the ECSA strain.90 In 2013, 
the first local transmission of the chikungunya virus was 
reported in the Western Hemisphere, beginning with an 
indigenous case in Saint Martin. Before the Saint Martin 
case, the only confirmed case of chikungunya in America 
was a traveller.91 In 2010, a virulent disease of febrile 
infection with arthralgic manifestations was detected in 
countries of South America. The infectious agent was a 
rebounded South American alphavirus i.e., the Mayaro 
virus (MAYV).35,92 Seventy-seven instances were reported 
in total and 19 were shown as seropositive. This virus 
normally infects men and women living close to enzootic 
transmission foci due to anthropogenic incursions as shown 
in Table 2.93
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Name of the 
Virus

Name of City/ 
Country where 

Epidemic 
Occurred

Year of the 
Epidemic/ Death 

Toll

Probable Cause of the 
Epidemic

Preventive Measures 
taken for Stopping 

the Epidemic

CHIKV89

Kenya, Comoros 
Islands, La 
Reunion, 

Seychelles, 
Mayotte, 

Mauritius, India, 
Southeast Asia

2004–2006
6 million cases in 
> 40 countries,
237 deaths in 

the Indian Ocean 
islands

Unusual dry and warm 
conditions, stagnant water, 

increased tourism, non-
existent herd immunity
E1-A226V mutation was 

identified in ECSA genotype 
enhanced transmission by 

Aedes albopictus.

Control of vectors 
by insecticides 

larvicides, personal 
protection

CHIKV91,94

Saint Martin 
Island, spread 

throughout 
the American 

continent

2013
> 2 million cases 
in 50 countries

CHIKV of Asian genotype 
responsible, Aedes aegypti 

and Aedes albopictus, 
population naïve to CHIKV, 

intense movement of 
people 

Avoid mosquito 
bites, physical 

barriers like topical 
repellents, bed nets 

MAYV 95
Portuguesa, 

Venezuela (South 
America) 

2010
77 cases

A new genotype N closely 
resembling genotype D 

infected persons residing 
near enzootic transmission 

foci

Use of insecticides, 
using natural 

enemies to reduce 
the vector density, 
isolating viraemic 

individuals

MAYV93 Brazil

2014–16
343 cases, 

antigenic cross-
reactivity might 
underestimate 

the MAYV cases.

Aedes aegypti, Aedes 
albopictus, and Culex 

quinquefasciatus could 
act as vectors for MAYV 
and humans could act 

as amplifying hosts and 
might be responsible for 

establishing an urban cycle 
of transmission for MAYV.  

No specific antivirals, 
cases treated 

with NSAIDs and 
corticosteroids, the 

vaccine is in the 
preclinical stage of 

development. 

MAYV33,96 French Guiana 
(France)

2020      
13 cases (9 out of 
13 cases were in 
urban settings)

The urban transmission 
cycle still needs to be 

explored. If established, 
then additional measures 

would need to be 
considered to prevent 

further outbreaks.

Suppress mosquito 
bites, avoid outdoor 

activities during 
peak activity hours 

of Heamogogus 
(sylvatic vector)

VEEV 95 Iquitos, Peru

2006
> 100 cases,

2 deaths, 
seroprevalence 

of 23% in Iquitos 
urban population

Unclear, increase in vector 
abundance and rate of 

transmission in the forest 
and urban spillover, 

unusually high river levels 
and high Culex (Mel.) 

ocossa prevalence

-

Table 2.Epidemics Caused by Some Mosquito-borne Alphaviruses 
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SINV97 Finland 2002 
597 cases

Mosquito bites, handling 
sick/ dead animals, more 

outdoor activity
-

SINV98 Finland

2012 
189 cases, 

2018 
71 cases

Different strains from 
mosquitos and patient sera 

were obtained indicating 
transfer between different 

regions of Europe, high 
summer temperature, 

precipitation, and a thick 
layer of snow during 

summer   

-

RRV89
Southeast 

Queensland 
(Australia)

2015
9544 cases

High temperature and 
rainfall, abundance of 

Culex. annulirostris and Ae. 
procax, multiple reservoir 

hosts

Mosquito control,
avoidance of bites

RRV99,100
New South 

Wales, Victoria, 
Western Australia 

2017
6928 cases

High temperature and 
rainfall, abundance of 

Cx. Annulirostris and Ae. 
Procax, multiple reservoir 

hosts
an unusually high 

number of Ochlerotatus 
camptorhynchus, more 

rainfall, outdoor activities

Mosquito control,
avoidance of bites

reducing vector 
population, 

educating people to 
reduce exposureBFV

Victoria 
(Australia), 
Tasmania

2002 
47 laboratory-

confirmed cases, 
2019

ONNV35

Nicla border 
camp in Western 

Cȏte d’Ivoire 
(Western Africa)

2003
31 cases in a 

refugee camp
-

The movement of 
refugees to North 

America was delayed 
to control the 

epidemic. 
CHIKV: Chikungunya virus, MAYV: Mayaro virus, VEEV: Venezuelan Equine Encephalitis virus, SINV: Sindbis virus, RRV: Ross River virus, BFV: 
Barmah Forest virus, ONNV: O’nyong-nyong virus

In addition, during an epidemic of dengue virus in Mato 
Grosso, midwestern Brazil, 15 of 604 patients responded 
positively to the detection of MAYV RNA during acute febrile 
illness.101,102 A total of 343 suspected cases were observed 
in Brazil following MAYV infection from 2014 to 2016, of 
which more than 50% occurred in the state of Goias as 
mentioned in Table 2.102 The increasing prevalence of MAYV 
disease outside the northern regions is of growing concern 
because the virus is spreading to other regions and may 
indicate a possible future epidemic in Brazil. 

One of the severe epidemic infections reported in South 
America is Venezuelan equine encephalitis (VEE). In early 
2006, VEEV infection was discovered through a fever 
surveillance programme at a hospital in Iquitos, Peru. An 
antibody prevalence study was performed in the urban 
area of   Iquitos to identify the risk factors for VEEV infection 

in the city. In addition, entomological investigations were 
carried out to identify whether VEEV vectors were present 
in the city. The result of the study observed that more 
than 23% of Iquitos inhabitants possessed neutralising 
antibodies to VEEV, which was found to be significantly 
associated with an increased prevalence of antibodies due 
to age, safe practices like bed net use, travelling at night, 
and the participant’s job. Studies suggested that VEEV 
infections occur frequently in pastoral areas, though the 
spread is also occurring in the urban areas of Iquitos, and 
hence more research is needed to estimate exactly which 
vectors and reservoirs are involved in the disease. 

An arthropod-covered RNA virus, SINV, belongs to the 
Alphavirus genus of the Togaviridae family. The first 
report on SINV came from a group of virus vectors, Culex 
pipiens and Culex univittatus.103,104 In Finland, outbreaks 
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occur every seven years, with hundreds or thousands of 
reported cases, but no pertinent information is available 
on factors associated with clinical infection of SINV.105 
RRV has been reported from the Western Pacific regions 
and Australia and is considered to be the most common 
cause of mosquito-borne disease in Australia.106 One of the 
largest reported outbreaks of RRV infection was reported 
in the year 2015 with more than 10,000 patients. Barmah 
Forest virus (BFV) disease originated from the forest of 
Barmah which is similar to the Ross River virus (RRV) which 
causes the epidemic arthritis.100,107 Since 1988, BFV has been 
reported in Western Australia, Queensland, New South 
Wales, Northern Territory, and Victoria. Occurrences of 
BFV without RRV occurred in New South Wales in 1994/ 
1995 and in 1993 in Australia.108

ONNV is an alphavirus transmitted mainly by bites of the 
African protozoan vector of malaria namely Anopheles 
funestus and Anopheles gambiae (Table 1).35,45,109 It was first 
isolated in the year 1959 in Uganda and has been reported 
to cause outbreaks in many sub-Saharan regions of Africa.110 
Precautionary measures are no different from those already 
taken to combat malaria infection. No effective vaccine or 
drug has been created so far.

Status of Prevention and Control Measures
Pharmacotherapy currently available for alphaviruses 
is a combination of ribavirin and interferon, which is 
relatively inefficient, and some anti-inflammatory drugs 
for symptomatic relief. There are still no FDA-approved 
drugs or vaccines specifically targeting alphaviruses. Table 
3 highlights some of the molecules that have shown anti-
alphaviral activity.

Progress in Vaccine Development
For encephalitis-causing viruses, various formulations of the 
inactivated virus have been tested, which include different 
mechanisms of inactivation and routes of administration. 
A mixture of three species i.e., WEEV, EEEV, and VEEV 
are inactivated by formalin, 1,5-iodonaphthyl azide, or 
ɤ-irradiation. Different routes used were intramuscular, 

subcutaneous, or intranasal. Immunogenic effects and 
protective efficacy varied depending on the above factors. 
Viral replicon particles (VRP) are based on an attenuated 
strain of VEEV (V3014) into which structural protein-
coding genes can be inserted. In WEVEE (trivalent vaccine 
candidate), expression of alphavirus glycoproteins with a 
deletion in the pE2 furin cleavage site is involved. The efficacy 
of the vaccine was observed in a lethal mouse model for all 
three viruses. Against alphaviruses, a variety of virus-like 
particles (VLPs) are being pursued for vaccination.111 A phase 
2 trial on a CHIKV VLP vaccine PXVX0317, an aluminium 
hydroxide-adjuvanted formulation, was conducted in the 
USA between 2018 and 2020 to evaluate the efficacy and 
immunogenicity among CHIKV naive individuals belonging 
to the age group of 18–45 years. The trial was well endured 
and generated a strong and long-lasting serum nullifying 
immune response against CHIKV which could last up to 
two years. A phase 3 clinical trial on adjuvanted PXVX0317 
with a single injection is being conducted at present.112 
The effects of binary ethylenimine-inactivated (BEI) RRV 
in diminishing the infectivity of the Ross River virus were 
studied in mice by immunising them intramuscularly with 
the BEI-inactivated virus. Antibodies were generated that 
neutralised RRV in vitro and mice also did not develop 
viraemia when challenged with live virus intravenously.96  
A formal- and UV-inactivated whole RRV vaccine grown in 
animal protein-free cell culture was tested for its efficacy 
and immunogenicity in animal models. Active immunisation 
with these vaccine-induced antibodies prevented viraemia 
in adult mice and protected the IFN-a/b receptor knockout 
mice from death and diseases.113

Present Status of Anti-alphaviral Drug 
Therapeutics
Difficulty in assessing the population at risk generates the 
need to evaluate and develop post-exposure treatment 
methods to control alphaviral infections. The drugs being 
developed are either targeting different proteins of the 
virus or altering the host-targeted immune response to 
viral infections like immunomodulation (Table 3). 

Alphavirus Anti-viral Molecules Target EC50 (µM)

CHIKV

Neoguillauminin A114 Protein kinase C 17.70

Lobaric acid115 Non-structural protein 1 5.30–16.30

Harringtonine116 Viral genome replication 0.24

Ivermectine117 Unidentified target 0.60

Abamectin117 Unidentified target 1.50

 Prostratin118 Protein kinase C 0.20–8.00

Berberine119 Extracellular signal-related 
kinase 1.80 ± 0.50

Table 3.Anti-alphaviral Molecules and Their Potential Targets with Half-maximal Effective Concentration
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CHIKV: Chikungunya virus, EEV: Equine Encephalitis virus, MAYV: Mayaro virus, ONNV: O’nyong-nyong virus, RRV: Ross River virus, SFV: 
Semliki Forest virus, SINV: Sindbis virus

EEV

ML33663 Unidentified target 3.60

Tomatidine120 Viral replication 10.00

Citalopram120 Viral replication 20.00

Dibenzylamines121 Protein synthesis 0.89

MAYV

Favipiravir122 Viral replication 4.50

Suramin123 Unidentified target 124.00

Quercetin124 Protein synthesis 10.00 ± 0.70

Cassia australis extract125 Viral replication 2.30

Punica granatum extract126 Unidentified target 12.30

ONNV

Rev-erbα/β127 Viral replication 10.00

Quercetin128 Viral RNA 10.00

RRV

Pentosan polysulfate129 Unidentified target 4.50

Geranial130 Virus replication 45.11 ± 2.46

Citronellol130 Virus replication 23.43 ± 0.14

 SFV

Chloroquine131 Unidentified target 2.00

Amantadine131 Unidentified target 2.50

Monensin132 Viral replication 6.00

  

 SINV

Hesperetin132 Unidentified target 20.50

Naringenin133 Unidentified target 14.90

Beclin134 Viral replication -

Ivermectin117 Viral replication 0.60 

Abamectin117 Viral replication 1.50

Berberine117 Viral replication 1.80

For the first time, anti-VEEV agents were identified using 
an in silico structure-based drug development technique. 
These agents inhibited capsid protein recognition by 
nuclear transport protein importin (IMP) α/β1. One of 
the compounds reduced VEEV replication but was inactive 
against a mutant VEEV lacking IMP α/β1-C interactions. 
Laboratory studies assessed four analogues of ML336 (a 
benzamidine) and three of them were tested in an in vivo 
study. BDGR-4, one of the analogues of ML336, when given 
to mice exposed to VEEV TrD (Trinidad Donkey strain) after 
24 hours and 48 hours of exposure, provided 100% and 90% 
protection from the lethal disease, respectively. A specific 
mutation in nsP4 provided resistance to VEEV against 
BDGR-4.72 So, the tendency of viruses to mutate also poses 
a problem in developing specific antiviral drugs. Peptide-
conjugated phosphorodiamidate morpholino oligomers 
(PPMOs) - antisense drug products were designed. The 
drug was effective against multiple strains of VEEV and 

could prove to be a very effective therapeutic agent against 
VEEV and other alphaviruses. Since these drugs are less 
effective when given post-exposure (in vivo) and the cases 
in humans are usually sporadic, it needs further exploration 
to develop the drug molecules, which are more efficient 
in controlling the infection post-exposure.135

Fifty-one betulin derivatives were assessed against SFV and 
SINV. The susceptibility of positive-stranded RNA viruses 
towards the derivatives of betulin and the absence of 
early toxicity and inhibitory effects on SFV and SINV make 
these compounds potential therapeutic candidates.136 
Doxycycline and ribavirin were found to have synergistic 
anti-CHIKV effects in vitro. Doxycycline, by binding to E2 
glycoprotein, inhibits the conformational change in E2 
required for binding to cell surface receptors.107 Antiviral 
dioxane-based compounds have been constructed to 
recognise the hydrophobic region of the capsid protein of 
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SINV using computational methods.137 They hindered 50% 
of viral replication at a concentration of 40 μM, with no 
signs of toxicity. So, further studies can be done to develop 
antivirals against this target. Chloroquine works against 
multiple viruses like SINV, SFV, and CHIKV by increasing 
the pH of the endosome,137 but its efficacy could not be 
proven in vivo for SFV and in CHIKV-infected patients. In 
vitro studies have proven that the antiapoptotic protein 
Bcl-2 prevents apoptosis in SFV and SINV-infected cells.102 
IFN-ɤ (Interferon-gamma) has also been demonstrated 
to help in clearing SINV from neurons by hindering viral 
transcription, reducing viral protein synthesis, and assisting 
in the recovery of cellular protein synthesis.138

N-methyl-D-aspartate (NMDA-a glutamate receptor) 
antagonists have been identified as protective agents 
against SINV-induced death of neurons, but not in mice,104 
whereas α-amino-3-hydroxy-5-methyl-4-isoazolepropionic 
acid (AMPA) antagonist talampanel provided protection 
against the fatal disease,137 by decreasing CNS inflammation. 
Two important antagonists of SINV include naloxone (an 
opioid receptor antagonist) and minocycline (a tetracycline 
derivative).138 They inhibit SINV infection by decreasing 
cytokine interleukin-1. A flavonoid-based chemical obtained 
from Salacia crassifolia shows antiviral activity against the 
capsid protein of MAYV. It was also subjected to bioassays 
(in vitro), which supported its potential as an antiviral agent 
inhibiting the effects of viral infection and low cytotoxicity 
with potency almost twice that of ribavirin.30 

Various drugs against alphaviruses, which are under 
investigation, are in the preclinical trial stage. There is still 
no effective FDA (Food and Drug Administration) approved 
specific antiviral drug available against alphaviruses. 

Conclusion and Future Perspectives
Although a lot of work is under progress to understand 
the mechanisms used by alphaviruses to adapt to a variety 
of natural hosts and vectors, there is no study as per the 
current information, regarding the genomic adaptation 
of the majority of these alphaviruses to different hosts in 
terms of codon and AA usage. The recent emergence of 
infections caused by these alphaviruses necessitates the 
in-depth study of these viruses at the molecular level. 
Future exploration of encephalitic alphaviruses at the 
molecular level for understanding genetic diversity and the 
structure of their envelope proteins will be of great help 
in developing specific drugs/ vaccines. The aerosol route 
of transmission generates the need to develop measures 
against encephalitic viruses. Due to the multiplicity of 
natural hosts and vectors for alphaviruses, we need to 
understand the genome dynamics of these viruses in 
relation to their hosts.
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