Extracellular Enzymatic Activity of Malassezia spp. Isolated from Pityriasis Versicolor Patients and Healthy Individuals

  • Vignesh Kanna Balaji Research Scholar, Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (DU), Kirumampakkam, Puducherry, India.
  • Latha Ragunathan Professor, Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (DU), Kirumampakkam, Puducherry, India.
  • Kavitha Kanniyan Professor and Head, Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (DU), Kirumampakkam, Puducherry, India.
  • Jeyakumari Duraipandian Professor and Head, Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, Puducherry, India.
Keywords: Extracellular Enzymes, Phospholipase, Protease, Malassezia, Pityriasis Versicolor


Introduction: Malassezia spp. is incapable of synthesising fatty acids. It takes external lipids as a nutritional source for survival by secreting various lipase enzymes, which degrade sebum to produce and uptake fatty acid. During this process, it produces certain extracellular enzymes; lipase, phospholipase, and protease which may act as virulence factors. We intend to determine the extracellular enzymatic action of Malassezia spp. isolated from individuals with pityriasis versicolor and healthy individuals.
Methodology: One hundred strains were obtained from healthy individuals and pityriasis versicolor (PV) patients each. The enzymatic activity was determined by phenotypic methods.
Results: Phospholipase production of Malassezia spp. was found to be high in PV patients (n = 85) as compared to healthy individuals (n = 38). Among these isolated, M. globosa showed the maximum production of phospholipase in both PV and healthy individuals (n = 49 and n = 12).
Conclusion: The extracellular enzymes produced by Malassezia spp. (lipase, protease, phospholipase, haemolysis) exhibit virulence factors which are involved in the pathogenicity of disease caused by Malassezia, but our findings showed no significant difference in isolates from healthy individuals and PV patients.

How to cite this article:
Balaji V K, Ragunathan L, Kannaiyan K, Duraipandian J. Extracellular Enzymatic Activity of Malassezia spp. Isolated from Pityriasis Versicolor Patients and Healthy Individuals. Chettinad Health City Med J. 2024;13(1):75-80.

DOI: https://doi.org/10.24321/2278.2044.202413


Sharma A, Rabha D, Hazarika D, Saikia A. Characterization of Malassezia species isolated from pityriasis versicolor patients and healthy subjects of North-East India by PCR-RFLP and 26SrDNA sequencing. Int J Recent Sci Res. 2017;8(4):16624-31.

Kindo AJ, Sophia SK, Kalyani J, Anandan S. Identification of Malassezia species. Indian J Med Microbiol. 2004;22(3):179-81. [PubMed] [Google Scholar]

Park M, Park S, Jung WH. Skin commensal fungus Malassezia and its lipases. J Microbiol Biotechnol. 2021;31(5):637-44. [PubMed] [Google Scholar]

Figueredo LA, Cafarchia C, Desantis S, Otranto D. Biofilm formation of Malassezia pachydermatis from dogs. Vet Microbiol. 2012;160(1-2):126-31. [PubMed] [Google Scholar]

Honnavar P, Prasad GS, Ghosh A, Dogra S, Handa S, Rudramurthy SM. Malassezia arunalokei sp. nov., a novel yeast species isolated from seborrheic dermatitis patients and healthy individuals from India. J Clin Microbiol. 2016;54(7):1826-34. [PubMed] [Google Scholar]

Angiolella L, Leone C, Rojas F, Mussin J, de los Angeles Sosa M, Giusiano G. Biofilm, adherence, and hydrophobicity as virulence factors in Malassezia furfur. Med Mycol. 2018;56(1):110-6. [PubMed] [Google Scholar]

Balaji VK, Ragunathan L, Kanniyan K, Duraipandian J. Antifungal susceptibility testing of Malassezia spp isolated from patients with pityriasis versicolor and healthy individuals. Microb Infect Dis. 2023;4(3):988-93. [Google Scholar]

Kavitha K, Sekar P, Pirabhakaran R, Mukhopadhyay T. Prevalence of Malassezia species associated with dandruff in South India-a study among mild to moderately affected individuals. Int J Adv Biotechnol Res. 2016;7(1):47-54.

Coutinho SD, Paula CR. Proteinase, phospholipase, hyaluronidase and chondroitin-sulphatase production by Malassezia pachydermatis. Med Mycol. 2000;38(1):73-6. [PubMed] [Google Scholar]

Juntachai W, Kummasook A, Mekaprateep M, Kajiwara S. Identification of the haemolytic activity of Malassezia species. Mycoses. 2014;57(3):163-8. [PubMed] [Google Scholar]

Rudramurthy SM, Honnavar P, Dogra S, Yegneswaran PP, Handa S, Chakrabarti A. Association of Malassezia species with dandruff. Indian J Med Res. 2104;139(3):431. [PubMed] [Google Scholar]

Saghazadeh M, Farshi S, Hashemi J, Mansouri P, Khosravi AR. Identification of Malassezia species isolated from patients with seborrheic dermatitis, atopic dermatitis, and normal subjects. J Med Mycol. 2010;20(4):279-82. [Google Scholar]

DeAngelis YM, Gemmer CM, Kaczvinsky JR, Kenneally DC, Schwartz JR, Dawson Jr TL. Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J Investig Dermatol Symp Proc. 2005;10(3):295. [PubMed] [Google Scholar]

Mirhendi H, Makimura K, Zomorodian K, Yamada T, Sugita T, Yamaguchi H. A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. J Microbiol Methods. 2005;61(2):281-4. [PubMed] [Google Scholar]

Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, Kronstad JW, Deangelis YM, Reeder NL, Johnstone KR, Leland M, Fieno AM, Begley WM, Sun Y, Lacey MP, Chaudhary T, Keough T, Chu L, Sears R, Yuan B, Dawson Jr TL. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci. 2007;104(47):18730-5. [PubMed] [Google Scholar]

Pini G, Faggi E. Extracellular phospholipase activity of Malassezia strains isolated from individuals with and without dermatological disease. Rev Iberoam Micol. 2011;28(4):179-82. [PubMed] [Google Scholar]

Davey ME, O’Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64(4):847-67. [PubMed] [Google Scholar]

Mukherjee PK, Chandra J. Candida biofilm resistance. Drug Resist Updat. 2004;7(4-5):301-9. [PubMed] [Google Scholar]

Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34-9. [PubMed] [Google Scholar]

Morros TJ, Gonzalez-Cuevas A, Ortega JA, Almagro CM, Hernando JM, Giralt AG, Otin CL. [Cutaneous colonization by Malassezia spp in neonates]. An Esp Pediatr. 2002;57(5):452-6. Spanish. [PubMed] [Google Scholar]

Sharma M, Sharma R. Profile of dermatophytic and other fungal infections in Jaipur. Indian J Microbiol. 2012;52(5):270-4. [PubMed] [Google Scholar]

Akaza N, Akamatsu H, Takeoka S, Sasaki Y, Mizutani H, Nakata S, Matsunaga K. Malassezia globosa tends to grow actively in summer conditions more than other cutaneous Malassezia species. J Dermatol. 2012;39(7):613-6. [PubMed] [Google Scholar]

Prohic A, Ozegovic L. Malassezia species isolated from lesional and non-lesional skin in patients with pityriasis versicolor. Mycoses. 2007;50(1):58-63. [PubMed]

Downing DT, Stewart ME, Strauss JS. Changes in sebum secretion and the sebaceous gland. Dermatol Clin. 1986;4(3):419-23. [PubMed] [Google Scholar]

Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun. 2002;70(2):878-8. [PubMed] [Google Scholar]

Neves RP, Magalhaes OM, da Silva ML, de Souza-Motta CM, de Querioz LA. Identification and pathogenicity of Malassezia species isolated from human healthy skin and with macules. Braz J Microbiol. 2005;36(2):114-7. [Google Scholar]