

Editorial

Redefining Faculty in the Age of Artificial Intelligence: Implications for Medical Education

Raja D

Professor, Department of Community Medicine, Chettinad Hospital & Research Institute, Chettinad Academy of Research & Education, Kelambakkam, Chengalpattu district, Tamil Nadu, India

DOI: https://doi.org/10.24321/2278.2044.202531

INFO

E-mail Id:

rajadanasekaran@gmail.com

Orcid Id:

https://orcid.org/0000-0002-4571-0407

How to cite this article:

Raja D. Redefining Faculty in the Age of Artificial Intelligence: Implications for Medical Education. Chettinad Health City Med J. 2025;14(3):1-3.

Introduction

The rapid embrace of digital technology, particularly artificial intelligence (AI), is leading to a paradigm shift for medical education. Peer-to-peer interactions, patient interactions, and human faculty have traditionally been the pillars of medical education. But increasingly, AI systems, from generative language models to intelligent tutoring platforms, assumed faculty-like roles, including lecturing, simulating clinical scenarios, providing feedback, and even advising students. Raising the issue of whether AI tutors should be recognised as "faculty" in medical education, this development does.

The Development of Al Tutors

From basic e-learning systems to advanced systems with competency-based testing, adaptive learning, and individualised feedback, Aldriven tools have evolved. Natural language processing-based models can generate case studies, quiz items, and explanations depending on the levels of proficiency of the learners. In parallel, Al-driven clinical case generators and virtual patient simulations provide realistic training environments that mirror the complexity of real healthcare. Al instructors now become interactive mentors as well as providing content. Anatomical and physiological simulations by Al provide individualised instruction previously only provided by human instructors, while conversational agents probe diagnostic reasoning. A Such features suggest that Al's role may go beyond the role of a simple "tool" and begin to approach that of a faculty member.

Justifications for Recognition

The scalability of AI tutors is among the strongest arguments in favour of their recognition as faculty. One well-established obstacle to medical education globally, especially in low-resource environments, is the lack of human faculty. AI tutors are available around the clock, which could democratise access to high-quality education in areas with a shortage of human resources. AI tutors are excellent at personalisation in addition to accessibility. Personalised learning experiences lacking in conventional lectures are enabled by adaptive systems that can adjust to the pace, strengths, and weaknesses of every learner. 6

Instructional consistency is another advantage. Al tutors provide standardised presentation, ensuring consistent abilities across diverse cohorts, compared to human teachers who might differ in interpretation and quality of instruction. Besides, instead of replacing teachers, Al can complement them. Al enables human faculty to dedicate themselves to advising, crafting their professional personas, and engaging students in empathy building by taking away routine teaching tasks such as feedback and grading. Lastly, recognising Al in a formal faculty role captures the reality of its inputs and can prompt organisations to implement, monitor, and govern Al ethically and responsibly.

Arguments against Recognition

Strident arguments caution against granting faculty status to AI in light of these advantages. Preparing doctors involves the development of empathy, professional behaviour, and role modelling as well as knowledge transmission. These human values are foundational to the teacher-student relationship and cannot be substituted by technology.⁹

Over-reliance poses another problem. Students relying excessively on AI tutors risk losing their capacity for critical thinking and problem-solving. The cognitive intensity of medical training can be undermined by a process called "cognitive offloading", wherein students over-rely on external systems. ¹⁰ Reliability and bias are also crucial issues. Since AI systems are only as impartial as the information they are trained with, errors or inaccuracies in the outputs could perpetuate adverse inequalities. ¹¹ AI tutors are not personally liable for false information, in contrast to human educators.

Recognition becomes more complicated by accreditation, ethics, and legal issues. No one knows who will be responsible if an AI tutor provides inaccurate advice: the developer, the institution, or the accreditor. ¹² In addition, awarding faculty status may cause physicians to lose their sense of professional identity and possibly decrease the value of the human factor in teaching. ¹³

A Middle Ground for AI as Adjunct Faculty

Based on the benefits and limitations, it may be more convenient to conceptualise AI as an adjunct faculty instead of a substitute. AI tutors can be noted for their restricted roles under the immediate guidance of human instructors, similar to adjunct or visiting professors. ¹⁴ This approach maintains protections while also being truthful about their contributions. Under such a paradigm, AI systems provide scalability, adaptive learning, and consistent teaching, while human faculty still deliver the empathy, mentorship, and ethical modelling that are essential in medicine. Human and artificial intelligence thus play complementary parts in a cooperative pedagogy.

Regulatory and Ethical Considerations

Tough frameworks need to be developed if AI is to be formally recognised in faculty roles. Transparency is key: students must know the limitations of AI tutors and be notified when they are dealing with them. To ensure that all content provided through AI meets curriculum requirements and instructional standards, human intervention is still of prime importance. It may become necessary for accrediting bodies such as the World Federation for Medical Education (WFME) to update their definitions of faculty credentials so that the closely managed incorporation of AI can be allowed. Ethical standards for privacy, reliability, and proper AI usage in teaching should also be set by institutions.

Looking Ahead

Al tutoring looks positively toward the future beyond undergraduate studies. By scaling content to career phases and lifelong learning requirements, they would be an asset in residency programmes and continuing medical education.¹⁹ Al literacy would need to take a top position in faculty development in order to prepare teachers to supervise and collaborate with Al systems effectively in the future.²⁰ Societal trust in technology on the regional level will likely be mirrored in cultural acceptance of Al as faculty. Institutions can negotiate these cultural idiosyncrasies with the help of comparative studies.²¹

Conclusion

In the education of physicians, AI is rapidly transforming from a supporting tool to a central one. AI most definitely performs faculty-like roles in content provision, learner direction, and performance assessment, despite the fact that AI does not replace human faculty when it comes to empathy, advising, and modelling. The most reasonable approach could be to consider AI as adjunct faculty supervised by human faculty, rather than denying or embracing AI as faculty entirely. Such recognition promotes accountability, ethical conduct, and the indispensable humanistic aspects of medical education while affirming their contributions.

Ultimately, the question is not if AI can teach, but how it can collaborate with human educators to educate the next generation of competent, compassionate physicians.

Conflict of Interest: None

Source of Funding: None

Declaration of Generative AI and AI-Assisted Technologies in the Writing Process:None

References

 Chan KS, Zary N. Applications and challenges of implementing artificial intelligence in medical

ISSN: 2278-2044

DOI: https://doi.org/10.24321/2278.2044.202531

- education: integrative review. JMIR medical education. 2019 Jun 14;5(1):e13930. [Google Scholar] [PubMed]
- Kononowicz AA, Woodham LA, Georg C, Edelbring S, Stathakarou N, Davies D, et al. Virtual patient simulations in health professions education: systematic review and meta-analysis. J Med Internet Res. 2019;21(7):e14676.[Google Scholar][PubMed]
- Wartman SA, Combs CD. Medical education must move from the information age to the age of artificial intelligence. Acad Med. 2018;93(8):1107–9.[Google Scholar]
- Winkler-Schwartz A, Bissonnette V, Mirchi N, Ponnudurai N, Yilmaz R, Ledwos N, Siyar S, Azarnoush H, Karlik B, Del Maestro RF. Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. Journal of surgical education. 2019 Nov 1;76(6):1681-90.[Google Scholar] [Pubmed]
- 5. O'Connor C, Farrow R. The promise of artificial intelligence in medical education. Med Teach. 2019;41(9):975–9.[PubMed]
- 6. Deng F, Gluckstein JA, Larsen DP. Student-centered medical education in the age of artificial intelligence: ready for prime time? Acad Med. 2021;96(3):342–7.
- 7. Kolachalama VB, Garg PS. Machine learning and medical education. NPJ Digit Med. 2018;1:54.[Google Scholar]
- 8. Wartman SA. The role of artificial intelligence in reshaping medical education. Acad Med. 2019;94(4):460–1.
- 9. Branch WT. The road to professionalism: reflective learning and role modeling in the medical humanities. Acad Med. 2017;92(2):170–5.
- 10. Davenport T, Kalakota R. The potential for cognitive offloading in healthcare education: risks and opportunities. J Med Syst. 2020;44(6):102.
- 11. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53.[Google Scholar] [PubMed]
- 12. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.[Google Scholar] [PubMed]
- 13. Ellaway RH, Pusic MV, Galbraith RM, Cameron T. Developing the role of educators in the age of Al: medical faculty identity reconsidered. Med Educ. 2020;54(10):932–8.
- 14. Li RC, Asch SM, Shah NH. Developing Al adjunct faculty for medical education. Acad Med. 2021;96(6):798–802.
- 15. European Commission. Ethics guidelines for trustworthy AI. Brussels: EC; 2019.
- 16. Goh PS, Sandars J. Artificial intelligence and medical education: a global horizon scan. Med Teach. 2020;42(2):152–8.

- 17. World Federation for Medical Education. Global standards for quality improvement in medical education. WFME; 2020.[PubMed]
- 18. AMA. Augmented intelligence in health care: policy and principles. American Medical Association; 2021.
- 19. Masters K. Artificial intelligence in medical education: possibilities for lifelong learning. BMC Med Educ. 2019;19(1):14.
- Mehta NB, Hull AL, Young JB, Stoller JK. Just imagine: new paradigms for medical education. Acad Med. 2013;88(10):1418–23.[Google Scholar] [PubMed]
- Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231–7.[Google Scholar][PubMed]