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Background: Pharmacovigilance (PV) is responsible for monitoring drug 
safety, and Artificial Intelligence (AI) is a promising technology that has 
the potential to transform this field.

Objective: This article will investigate the role of AI in PV and its potential 
benefits for patient safety and healthcare providers.

Methods: A structured review of relevant literature was conducted 
to identify studies that demonstrate the applications of AI in PV. The 
identified studies were analysed to determine the specific roles of AI 
in PV and its potential benefits.

Results: The practice of AI in PV allows for the analysis of large datasets, 
adverse event reporting, the detection of safety signals, the prioritisation 
of safety issues, data mining, and predictive modelling. The benefits 
of AI in PV include improved efficiency, increased accuracy, enhanced 
patient safety, faster analysis of safety issues related to drugs, and 
reduced healthcare costs.

Conclusion: AI has enormous potential to improve PV by streamlining 
case processing and improving the identification of adverse events. 
However, there are also challenges that need to be addressed in 
implementing AI in PV. Overall, AI has significant promise for enhancing 
patient safety and reducing healthcare costs.

Keywords: Adverse Drug Reactions, Artificial Intelligence, 
Pharmacovigilance

Introduction
Pharmacovigilance (PV) is the practice of monitoring and 
evaluating the safety of medicines and medical devices 
throughout their lifecycle. It involves collecting, analysing, 
and reporting adverse drug reactions (ADRs) and other 
drug-related problems to regulatory authorities, healthcare 
professionals, and patients. PV aims to identify and prevent 

potential harm to patients by detecting and assessing the 
risks associated with the use of medicines and medical 
devices.1

The importance of PV lies in several areas. Firstly, it protects 
patient safety by identifying and monitoring the ADRs of 
drugs and devices, preventing potential harm to patients. 
Secondly, it helps improve the quality of healthcare by 
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ensuring that medicines and medical devices are safe and 
effective.2 Thirdly, it promotes public health by providing 
valuable information about the safety and effectiveness 
of drugs and devices to healthcare providers, regulatory 
authorities, and the public. Fourthly, it supports regulatory 
compliance by requiring pharmaceutical companies 
to conduct PV activities as a condition of marketing 
authorisation.1 Finally, it facilitates continuous improvement 
by collecting and analysing data on ADRs, identifying areas 
for improvement, and fostering continuous learning and 
development.1

Artificial intelligence (AI) is a branch of computer science 
that deals with the development of algorithms and 
computer programs that can perform tasks that typically 
require human intelligence. AI is characterised by the 
ability to reason, learn, perceive, and adapt to changing 
circumstances. AI is rapidly transforming the healthcare 
industry in a variety of ways. Medical imaging, diagnosis, 
treatment, drug discovery, and personalised medicine are 
just a few examples of how AI is being used to improve 
patient outcomes and reduce costs.3

The current methods used in PV have limitations such 
as passive reporting, underreporting, data biases, and 
the impact of confounding factors and therefore can be 
time-consuming and resource-intensive. As the volume 
of data generated in PV increases, traditional methods 
of managing this data have become inadequate. This has 
led to an increased interest in the use of AI in PV.4–6 AI has 
the potential to revolutionise healthcare by improving 
patient outcomes, reducing costs, and increasing efficiency. 
However, there are also challenges to overcome, such as 
ensuring the accuracy and ethical use of AI algorithms, 
protecting patient privacy, and addressing concerns about 
job displacement.7

In this review, we have discussed the role and benefits of 
using AI in PV, what the challenges are in implementing 
AI in the overall PV programme and what the prospect of 
the amalgamation of PV and AI.

Background of AI
The use of AI in healthcare dates to the 1970s, when 
expert systems were explored for clinical decision-making.8 
However, it wasn’t until the development of machine 
learning algorithms and large datasets that AI’s potential 
in healthcare was realised. In the early 2000s, the use of 
AI gained momentum with the development of natural 
language processing and computer vision technologies.9 
Natural language processing enabled computers to 
interpret human language, which was crucial for extracting 
information from medical records. Today, AI is widely used 
in healthcare for various applications, including medical 
image analysis, clinical decision support, drug discovery, 
and patient monitoring.

Types of AI
Rule-based System

A rule-based system utilises a set of “if-then” rules to tackle 
intricate problems. These rules enable the system to make 
informed decisions or draw conclusions based on data 
input.10 For example, a rule-based system could diagnose 
a medical condition based on a set of symptoms, using 
pre-defined rules that specify which symptoms indicate 
which conditions. Rule-based systems are most effective 
in specific domains with clear decision-making processes, 
such as medical diagnosis or fraud detection. However, 
they may struggle to handle situations outside of the 
predefined rules.

One benefit of rule-based systems is their transparency and 
ease of understanding, which is important in applications 
such as medical diagnosis. Moreover, rule-based systems 
can be developed rapidly and at a low cost, as they don’t 
require large amounts of training data.

Machine Learning
Machine learning (ML) is a rapidly evolving sub-discipline 
of AI that enables computers to learn from data and make 
predictions or decisions without explicit programming.11 
ML involves training algorithms on large datasets, and 
the algorithm learns to recognise patterns and make 
predictions based on that data. There are three main 
types of ML: supervised learning, unsupervised learning, 
and reinforcement learning.

• Supervised learning involves training the algorithm on 
a labelled dataset, where each data point is associated 
with a label or target variable.12 The algorithm learns 
to recognise patterns in the input data and to make 
predictions based on those patterns. Supervised 
learning is commonly used for tasks such as image 
classification or speech recognition.

• Unsupervised learning involves training the algorithm 
on an unlabelled dataset, where there are no target 
variables. The algorithm learns to recognise patterns 
and structures in the data and to group similar data 
points. Unsupervised learning is commonly used for 
tasks such as clustering or anomaly detection.12

• Reinforcement learning involves algorithm learning 
to make decisions based on feedback from the 
environment. The algorithm receives a reward or 
penalty based on its actions, and it learns to make 
decisions that maximise its reward. Reinforcement 
learning is commonly used for tasks such as game 
playing or robotics.13

Deep Learning
Deep learning is a type of supervised machine learning 
technique that employs neural networks to learn from 
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data by recognising patterns in multiple layers of neurones 
inspired by the human brain’s structure and function.14 This 
method has achieved exceptional performance in image 
and speech recognition, natural language processing, and 
game playing. The healthcare industry has also leveraged 
deep learning to advance medical image analysis, drug 
discovery, and disease prediction.15

The ability of deep learning to automatically learn and 
extract features from raw data has proven valuable when 
it is challenging to manually design features. Moreover, 
training deep learning models with large datasets can 
improve their accuracy and generalisation performance. 
Nevertheless, deep learning models’ challenges include 
their high computational expense and reliance on large 
amounts of training data. Moreover, they can be challenging 
to interpret and comprehend, particularly in medical 
diagnoses where understanding the reasoning behind a 
decision is crucial.15

Bayesian Network
Bayesian networks are a type of probabilistic graphical 
model that represents a set of random variables and their 
conditional dependencies using a directed acyclic graph.16 
Bayesian networks can be used to model the relationship 
between ADRs and patient characteristics, such as age, 
sex, and medical history. By modelling the dependencies 
between these variables, a Bayesian network can help to 
identify patient subpopulations that are at increased risk 
of developing ADRs.17

Decision Tree
A decision tree is a model that predicts by recursively 
splitting data based on informative features. Each split 
creates a new node, and each leaf node represents a 
prediction.18 Decision trees identify ADRs that are associate 
with a drug based on patient characteristics and clinical 
features. They can help to identify the relevant risk factors 
for an ADR.

Natural Language Processing (NLP) 
NLP deals with the interaction between computers and 
human language. NLP algorithms can be used to perform 
tasks such as sentiment analysis, machine translation, 
and question answering. It can analyse unstructured data 
sources, such as social media posts and electronic health 
records, to identify potential ADRs and monitor drug safety 
in real-time. By analysing large volumes of text data, NLP 
algorithms can identify patterns and trends that may be 
missed by traditional PV methods.19

There is often a lack of clear demarcation between different 
techniques of AI, as researchers often use combinations 
of various AI approaches in healthcare research. The use 
of multiple techniques, including ML, deep learning, and 
NLP, can lead to improved performance and outcomes 

in healthcare applications.20 However, the lack of a clear 
boundary between these techniques can make it challenging 
to understand the specific contribution of each approach 
in a given study. Ultimately, a better understanding of the 
strengths and limitations of different AI techniques can help 
to guide the development of more effective and efficient 
healthcare applications.

Application of AI in PV
ADRs Reporting

ADRs pose a significant public health challenge and contribute 
to hospitalisation and death rates in developed countries. 
Unfortunately, ADRs are commonly underreported, which 
undermines the effectiveness of spontaneous reporting. 
Healthcare professionals may be hesitant to report ADRs 
as it increases their workload. However, an alternative 
approach is to integrate an electronic health record (EHR) 
system that assists healthcare professionals in completing 
ADR reports. This method is efficient and may increase 
the ADR reporting rate, which ultimately improves patient 
safety.21

NLP algorithms can extract relevant information from 
unstructured text sources, such as medical records and 
social media posts, to identify potential ADRs. ML algorithms 
can analyze large datasets to identify potential safety signals 
and predict which patients are most at risk of developing 
ADRs. These techniques can help to develop targeted 
prevention strategies and improve patient outcomes Figure 
1.22

Figure 1.Role of Artificial Intelligence in 
Pharmacovigilance

Signal Detection 
Signal detection is a critical process in PV that involves 
identifying potential safety issues associated with 
medication use through the analysis of post-market 
surveillance data.23 The Bayesian confidence propagation 
neural network (BCPNN) is a valuable tool that combines 
Bayesian statistics and neural network architecture to 
identify potential safety signals from large amounts of 
PV data. BCPNN has been shown to effectively detect 
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safety signals early and avoid false positives, making it an 
important tool for improving PV and patient safety.24 The 
FDA collects and stores numerous data sets related to 
post-market drugs and adverse events (AEs), including the 
FDA Adverse Event Reporting System (FAERS). However, 
the narratives contained in these reports need to be 
coded using standardised terminology to enable further 
review. A proof-of-concept ML approach has been used 
to automatically detect AEs in various textual regulatory 
data sets, which could help support post-market regulatory 
activities and improve patient safety.25 These approaches 
demonstrate the potential of AI to automate and improve 
signal detection in PV.

Signal Prioritization 
Signal prioritisation is the process of determining which 
potential safety issues identified during signal detection 
should be investigated further. The growing number 
of ADR reports from patients and mass media-related 
sanitary crises have led to overwhelming PV networks. AI 
could assist PV experts by automatically coding reports 
and prioritising assessments. A recent study successfully 
trained and validated AI models to identify ADRs and 
assess their seriousness using unstructured text data from 
patient reports on the French national PV web portal. The 
study utilised gradient boosting and transformer-based 
approaches, both of which produced similar results in 
internal and external validation. This research suggests 
that AI has the potential to support PV networks during 
periods of high ADR reporting.26

Case Processing 
Effective PV requires efficient case processing, which 
involves collecting, managing, and evaluating individual case 

safety reports (ICSRs) related to ADRs. The process includes 
several steps, such as data entry, medical review, causality 
assessment, quality control, and reporting. Upon receipt 
of an ICSR, the information provided is verified, and the 
ADR experienced is evaluated to determine its seriousness 
and causality. This information is entered into a safety 
database, and a medical review is conducted to ensure 
its accuracy and completeness. Quality control checks 
are then performed to confirm the data’s accuracy and 
completeness before submission to regulatory authorities.

The traditional method of case processing can be time-
consuming and labour-intensive, involving a manual 
review of ICSRs submitted by healthcare professionals, 
patients, and other sources. However, the use of AI can 
help automate case processing, enabling faster and more 
efficient identification of AEs.

Recent studies have demonstrated the effectiveness of AI-
based approaches in case processing. Wang et al. utilised 
the Medical Language Extraction and Encoding (MedLEE) 
algorithm, an NLP system, to extract information about 
seven drugs from unstructured data and convert it into 
structured representation to identify medication events and 
AEs.27 Bostsis et al. used a rule-based classifier to classify 
cases of AE anaphylaxis after H1N1 vaccination, achieving 
over 93% accuracy.28 Schmider et al. conducted a pilot study 
to evaluate case management using AI-based technology 
and observed case-level accuracy with the processing 
of approximately 33.3% of cases with not less than 80% 
completion.29 These studies demonstrate the potential 
of AI to improve PV by streamlining case processing and 
improving the identification of AEs (Table 1).

Role of Artificial Intelligence in Pharmacovigilance Description

Signal Detection

AI can analyse large volumes of data from multiple sources, 
such as electronic health records (EHRs), social media, and 
other sources, to detect potential adverse drug reactions 
(ADRs) and signals. AI can also analyse data in real-time, 

allowing for the detection of ADRs in near real-time.

Data Mining

AI can analyse large amounts of data from clinical trials, 
EHRs, and other sources to identify patterns in adverse event 

reporting, drug utilisation, and patient outcomes. This can 
help identify previously unknown ADRs and enable better 

drug safety decision-making.

Risk Management

AI can help identify patient populations that may be at higher 
risk of adverse events and help optimise risk management 
strategies. AI can also help identify drug-drug interactions, 

contraindications, and other risk factors.

Table 1.Role of Artificial Intelligence in Pharmacovigilance
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Data Mining
In PV, data mining plays a crucial role in extracting useful 
patterns and insights from complex data sets. Advanced 
analytical methods, such as clustering, classification, asso-
ciation rule mining, and text mining, are used to discover 
hidden relationships and associations between drugs and 
ADRs and to identify potential safety signals that might 
otherwise go unnoticed. Data mining techniques can help 
identify patterns in data sets, such as drugs that are fre-
quently associated with a particular AE or patients who are 
at a higher risk of experiencing a certain AE. This can enable 
regulatory authorities and pharmaceutical companies to 
quickly identify and evaluate potential safety concerns 
associated with marketed drugs, thereby improving patient 
safety and preventing AEs.

To further improve patient safety, it is essential to 
automatically extract drug-drug interactions (DDIs) from 
medical texts. A deep neural network model and a novel 
attention mechanism were proposed to enhance the 
discrimination of significant words for DDI extraction from 
medical texts.30 In another study, a neural network-based 
predictive system (NNPS) was used to predict polypharmacy 
side effects, outperforming all five established methods in 
terms of accuracy, complexity, and running time speed [31].

Predictive Modeling 
Predictive modelling is an important area of PV that uses 
statistical and ML techniques to analyse large datasets and 

identify potential ADRs before they become significant 
public health concerns. Predictive models are trained on 
data from various sources, including electronic health 
records, clinical trials, social media, and other sources of 
real-world evidence. Ward et al. developed an explainable 
AI (XAI)-based technique for PV monitoring by quantifying 
the contribution of specific drugs to Acute Coronary Syn-
drome (ACS) predictions. Multiple machine learning models 
were trained to predict ACS-related adverse outcomes for 
individuals aged over 65 using their health information, and 
XAI algorithms were used to calculate the drugs that led to 
these predictions. Rofecoxib and celecoxib were found to 
have a significant contribution to ACS predictions, and the 
XAI libraries LIME and SHAP were successful in identifying 
important features.32

Benefits of AI in PV
AI presents an opportunity for significant advancements 
in PV by improving the accuracy and efficiency of drug 
safety surveillance. AI-powered techniques can analyse 
vast amounts of data from various sources, identifying 
potential ADRs and DDIs that may have been overlooked 
by traditional methods. This enhanced ability to identify 
safety issues can improve patient safety and help healthcare 
professionals make more informed decisions about 
prescribing medications, ultimately leading to better patient 
outcomes.33

In addition, AI can enhance signal detection by quickly and 
accurately identifying potential safety signals that might 

Signal Prioritisation
AI can prioritise signals based on their clinical relevance and 
potential impact, allowing pharmacovigilance teams to focus 

on the most important signals first.

Case Management
AI can help streamline the case management process by 
automating the data entry process, identifying duplicate 

cases, and ensuring that all relevant information is captured.

Data Quality AI can help improve the quality of pharmacovigilance data by 
identifying errors, inconsistencies, and missing information.

Predictive Analytics
AI can help predict the likelihood of future adverse events 

and drug interactions, enabling proactive risk management 
and improved patient safety.

Regulatory Compliance
AI can help ensure that pharmacovigilance activities comply 

with regulatory requirements, such as the reporting of 
adverse events to regulatory agencies.

Drug Repositioning

AI can help identify new therapeutic uses for existing drugs, 
enabling the repurposing of drugs for new indications. This 
can help accelerate drug development and improve patient 

outcomes.



83
Kumar S et al.

Chettinad Health City Med. J. 2025; 14(2)

ISSN: 2278-2044 
DOI: https://doi.org/10.24321/2278.2044.202527

have been missed through manual review of individual 
case safety reports.34 This can enable quicker responses to 
potential safety concerns and reduce the risk of harm to 
patients. Furthermore, AI can automate certain tasks, such 
as case processing and data analysis, to increase efficiency 
in PV.35–37 This can reduce the workload for PV professionals 
and improve the speed and accuracy of data analysis.

Finally, AI can help identify patient subgroups that may 
be more susceptible to ADRs, allowing for personalised 
medicine and reducing the risk of harm to vulnerable 
populations.38

Major Challenges
In the field of PV, several challenges need to be addressed 
to ensure the effective and responsible use of AI algorithms. 
Firstly, the accuracy and reliability of these models heavily 
rely on the quality of the data used to train them. However, 
incomplete, inconsistent, or erroneous data can result in 
biased or incorrect outcomes, compromising the integrity 
of the analysis.39

Additionally, AI algorithms may perpetuate existing biases 
in the training data, leading to inaccurate or discriminatory 
results.40 This can be particularly problematic in PV, where 
algorithm bias could potentially lead to the underreporting 
or over-reporting of AEs.

Standardisation and interoperability are also major issues 
that need to be tackled in this domain.41 The lack of 
uniformity in data collection, storage, and analysis can make 
it challenging to integrate data from various sources and 
ensure consistency in data processing and interpretation.

Furthermore, integrating AI technologies into existing 
PV systems can be challenging, given the potential 
incompatibility with current workflows and processes.41 
Ethical considerations must also be considered,42 as the 
use of patient data raises concerns about privacy and 
confidentiality. Patients need to understand how their 
data is being used and protected, and there is a risk of data 
breaches that can compromise the privacy and security of 
personal health information.

Even regulatory agencies such as the US Food and Drug 
Administration (FDA) and the European Medicines 
Agency (EMA) have raised concerns about its use.43 A 
significant concern is some AI models’ lack of transparency 
and interpretability, which can make it challenging to 
comprehend how they make their predictions.44 This is 
especially problematic in ADR reporting, where accuracy 
is crucial to ensure patient safety. Additionally, regulatory 
agencies are wary of potential biases in AI models that 
may lead to erroneous predictions and undermine the 
effectiveness of PV efforts.

To address these concerns, regulatory agencies are 
actively developing guidelines and standards for the use 

of AI in PV. These measures aim to ensure that AI models 
are transparent, reliable, and safe to use in drug safety 
monitoring. By establishing best practices for developing, 
validating, and deploying AI algorithms, regulatory agencies 
strive to promote the responsible use of this technology 
in PV.

Prospects
The future of AI in PV is promising, with numerous 
opportunities to improve drug safety monitoring and 
enhance patient outcomes. 

One of the most significant benefits of AI in PV is its ability 
to integrate with other technologies. For example, AI 
algorithms can be combined with EHRs and other health 
information technologies (HIT) to identify potential ADRs 
quickly. This integration can also help identify patterns 
and trends in drug safety data, which can inform drug 
development and regulatory decision-making.

AI is also expected to play a more significant role in drug 
development. By analysing large data sets, AI algorithms 
can help identify potential drug targets, predict the safety 
and efficacy of drugs, and speed up the drug development 
process. This expansion of AI in drug development has 
the potential to reduce the cost of drug development and 
increase the success rate of clinical trials.

AI-based tools are also being developed to help manage 
drug safety risks. For example, AI algorithms can help 
identify patients at high risk of developing ADRs and 
recommend appropriate interventions to reduce their 
risk. These tools can also help identify drugs that may 
have a higher risk of causing ADRs and inform regulatory 
decision-making.

Finally, the successful integration of AI in PV will require 
collaboration between industry, regulators, and academia. 
Industry stakeholders can provide access to large data sets, 
while regulators can provide guidance on the development 
and validation of AI algorithms. Academia can contribute to 
the development of new AI-based tools and the evaluation 
of their effectiveness.

Conclusion
PV is a crucial aspect of healthcare that ensures patient 
safety by monitoring and evaluating the safety and 
efficacy of drugs. AI has the potential to revolutionise PV 
by improving efficiency, accuracy, and speed of analysis, 
leading to enhanced patient safety. With the availability 
of vast amounts of data, AI can be leveraged to detect AE, 
signal detection, data mining, and predictive modelling. 
However, there are also challenges in implementing AI in PV, 
such as data privacy and security, lack of standardisation, 
quality and quantity of data, and bias in AI algorithms. 
The future of AI in PV is promising, with the integration of 
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other technologies, expansion in drug development, and 
the development of AI-based tools for risk management. 
Collaboration between industry, regulators, and academia 
is essential to ensure AI’s ethical and responsible use in PV. 
In conclusion, the use of AI in PV holds immense potential 
for improving patient outcomes and should be further 
explored and implemented responsibly.
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