

Review Article

Dietary Interventions in the Prevention and Management of Renal Calculi: A Comprehensive Review

Devangkumar Mahendrakumar Parmar

Associate Professor, Department of Surgery, Government Homoeopathic Medical College and Hospital, Dethli, Siddhpur, Gujarat, India

DOI: <https://doi.org/10.24321/2278.2044.202546>

INFO

E-mail Id:

dr_devang333@yahoo.co.in

Orcid Id:

<https://orcid.org/0009-0002-0645-7549>

How to cite this article:

Parmar D M. Dietary Interventions in the Prevention and Management of Renal Calculi: A Comprehensive Review. Chettinad Health City Med J. 2025;14(4):31-37.

Date of Submission: 2024-04-19

Date of Acceptance: 2025-02-22

ABSTRACT

Renal calculus, commonly known as kidney stone, is a solid crystalline mineral material formed within the kidney or urinary tract. This review provides an extensive examination of the role of dietary interventions in the prevention and management of renal calculi. It delves into the mechanisms underlying stone formation, the influence of dietary factors, evidence-based dietary strategies, clinical management, and future research directions. By consolidating current knowledge and highlighting areas for further exploration, this review aims to inform clinical practice and enhance patient care in the management of renal calculi.

Keywords: Renal Calculus, Kidney Stone, Dietary Interventions, Prevention, Management, Precision Medicine, Gut Microbiome

Introduction

Renal calculus, commonly known as a kidney stone, is a solid crystalline mineral material formed within the kidney or urinary tract ^{1,2}. These stones can vary, from being as small as a grain of sand to as large as a golf ball. The formation of renal calculi is primarily attributed to the concentration of certain substances in the urine, which leads to their crystallisation and eventual aggregation into stones ³⁻⁵. Several factors contribute to the formation of renal calculi. One major factor is inadequate fluid intake, which decreases urine volume and increases the concentration of stone-forming substances such as calcium, oxalate, and uric acid ^{4,6,7}. Additionally, certain medical conditions such as hyperparathyroidism, gout, and urinary tract infections can predispose individuals to kidney stone formation by altering the composition of urine ⁸⁻¹⁰. Moreover, dietary factors play a crucial role in developing renal calculi. A diet high in sodium, protein, and oxalate-rich foods, such as spinach, nuts, and chocolate, can increase the risk of stone

formation by promoting the excretion of calcium and other stone-forming substances in the urine ^{5,11,12}.

Diet plays a pivotal role in the prevention and management of renal calculi. Certain dietary factors can either promote or inhibit the formation of kidney stones. One significant consideration is the consumption of fluids. Adequate hydration, particularly through water intake, is crucial in preventing the formation of kidney stones. Water helps to dilute the urine, reducing the concentration of stone-forming substances and preventing their crystallisation. Experts recommend aiming for at least 8-10 glasses of water per day, or enough to produce around 2 litres of urine daily ^{13,14}. Another essential dietary consideration is the intake of sodium. High levels of dietary sodium can increase the excretion of calcium in the urine, which may contribute to the formation of calcium-based kidney stones. Therefore, reducing sodium intake by limiting the consumption of processed foods, canned soups, and salty snacks can be beneficial in preventing stone formation ¹⁵⁻¹⁷.

Furthermore, individuals prone to calcium oxalate stones should be mindful of their oxalate intake. Oxalates are naturally occurring compounds found in many plant-based foods, including spinach, rhubarb, nuts, and chocolate. When consumed in excess, oxalates can bind with calcium in the urine, forming insoluble crystals that contribute to stone formation. While it's not necessary to completely eliminate oxalate-rich foods from the diet, moderation and pairing them with calcium-rich foods can help mitigate their impact. Similarly, individuals with a history of uric acid stones should be cautious about their purine intake ^{13,18,19}. Purines are compounds found in certain foods, particularly organ meats, shellfish, and beer, that can increase uric acid production in the body. Elevated levels of uric acid in the urine can lead to the formation of uric acid stones. Therefore, limiting the consumption of purine-rich foods and maintaining a healthy body weight can help reduce the risk of uric acid stone formation ^{6,20,21}.

In addition to these dietary considerations, adopting a balanced and varied diet rich in fruits, vegetables, and whole grains can provide essential nutrients and promote overall urinary tract health. Incorporating foods high in citrate, such as citrus fruits and juices, can also be beneficial, as citrate inhibits the formation of certain types of kidney stones by binding to calcium and preventing crystal formation ¹⁵.

Prevalence of kidney stones

The global rise in the prevalence of kidney stones presents a multifaceted health challenge across diverse demographic and geographic landscapes. In China, a notable increase from 5.95% to 10.63% in renal calculi prevalence between 1991–2000 and 2011–2016 underscores a concerning trend. Similarly, the United States witnessed a significant population-adjusted stone prevalence rate of 10.3% during 2007–2010, indicating a substantial burden. Developed countries, including Germany, experienced consistent annual increments ranging from 4% to 10% in kidney stone incidence over recent years, with Germany reporting approximately 7.5 lakh cases of renal calculi between 1979–2000 ²². Contrastingly, in developing countries, kidney stone occurrences manifest at younger ages, reflecting distinct epidemiological patterns. Uric acid stones predominate in these regions, suggesting potential environmental or dietary factors influencing stone formation. The rise in the global prevalence of Chronic Kidney Disease (CKD), a precursor to renal calculi, by 29.3% from 1990 to 2017 underscores the interconnectedness of renal health challenges ^{11,23}. India, with its unique healthcare landscape, faces a significant burden, with approximately two million individuals affected by urolithiasis annually, especially in designated stone belt areas. Moreover, the prevalence of CKD, a contributory factor to renal calculus formation, stands notably high at

17.2%, with renal calculi affecting approximately half of the population ^{24,25}.

Delving into the composition and characteristics of kidney stones further elucidates the complexity of this health issue. Calcium oxalate stones, the most prevalent type, occur predominantly in the late 40s, with a recurrence rate of approximately 38%. Conversely, calcium phosphate stones, comprising 15% of all kidney stones, present earlier, in the early 40s, with a recurrence rate of around 43%. Uric acid stones, affecting 10%-15% of individuals, are more common in older adults, with a recurrence rate of approximately 51%. Struvite stones, though less prevalent, occur across age groups, with a recurrence rate of about 41%. Lastly, cystine stones, relatively rare yet challenging, primarily affect younger individuals, with an exceptionally high recurrence rate of approximately 89% ^{1-3,7,21,26,27}. This intricate interplay of demographic, geographic, and compositional factors underscores the imperative for targeted preventive strategies and interventions to mitigate the escalating global burden of kidney stones.

Mechanism of Formation of Renal Calculus

The formation of renal calculi, or kidney stones, involves intricate physiological mechanisms influenced by dietary factors. Understanding these mechanisms is crucial for elucidating the relationship between diet and renal calculus formation.

Urinary Excretion of Stone-Forming Substances

The urinary tract serves as a conduit for the elimination of metabolic waste products and excess substances from the body, including those implicated in kidney stone formation. Key stone-forming substances include calcium, oxalate, uric acid, and cystine. The concentrations of these substances in urine are influenced by dietary intake, metabolic processes, and renal handling ^{5,12,14,27}. Calcium, primarily derived from dietary sources, is excreted in the urine and plays a central role in stone formation. Hypercalciuria, or elevated urinary calcium levels, is a common risk factor for calcium-based stone formation. Dietary factors such as sodium intake can influence urinary calcium excretion by modulating renal tubular reabsorption. High sodium intake promotes urinary calcium excretion by increasing the delivery of calcium to the distal tubules, where it can be excreted in the urine. Additionally, low dietary calcium intake can lead to increased intestinal absorption of oxalate, resulting in higher urinary oxalate concentrations and a greater propensity for calcium oxalate stone formation ^{13,18,28}.

Oxalate, a metabolite found in many plant-based foods, can bind with calcium in the urine to form insoluble calcium oxalate crystals, a common type of kidney stone. Dietary factors that increase oxalate intake, such as consumption

of oxalate-rich foods like spinach, rhubarb, and nuts, can contribute to stone formation in susceptible individuals. Furthermore, factors affecting intestinal oxalate absorption, such as gut microbiota composition and dietary fibre intake, can influence urinary oxalate excretion^{12,16,17,19}.

Uric acid, a byproduct of purine metabolism, is another stone-forming substance whose urinary excretion is influenced by dietary factors. Purine-rich foods, such as organ meats, shellfish, and beer, can increase uric acid production and urinary excretion, predisposing individuals to uric acid stone formation. Additionally, factors such as dehydration and acidic urine pH can promote the precipitation of uric acid crystals, further contributing to stone formation^{2,6,9,26,29}.

Once stone-forming substances are present in the urine at elevated concentrations, they can undergo nucleation, aggregation, and crystal growth, leading to the formation of kidney stones. Nucleation refers to the initial formation of small crystal aggregates from dissolved solutes in the urine. Factors such as urinary pH, temperature, and the presence of crystal nucleators influence the rate and extent of nucleation^{1,20,26}. Following nucleation, crystal aggregates can undergo aggregation, where individual crystals adhere to one another to form larger aggregates or clusters. Aggregation is facilitated by factors such as urinary stasis, where reduced urine flow allows for prolonged contact between crystals, promoting their aggregation. Additionally, the presence of urinary proteins and mucopolysaccharides can act as bridging molecules, facilitating crystal aggregation³⁰⁻³².

Finally, once crystal aggregates reach a critical size, they can grow further through the addition of solute molecules from the surrounding urine. Crystal growth is influenced by factors such as urinary supersaturation, where the concentration of stone-forming substances exceeds their solubility limits, driving crystal precipitation and growth. Factors affecting urinary pH, such as diet and metabolic processes, can alter the solubility of stone-forming substances and influence crystal growth rates^{1,3,4,12,16,20}.

Clinical Management

Clinical management of kidney stones involves a multifaceted approach that often includes dietary interventions aimed at reducing the risk of stone formation and recurrence. Understanding the practical implications of dietary modifications is essential for healthcare providers to effectively counsel patients on preventive measures and optimise treatment outcomes.

Prevention Strategies

- **Hydration:** Adequate fluid intake is paramount for kidney stone prevention. Encouraging patients to

maintain a high fluid intake, primarily water, helps to dilute urine and reduce the concentration of stone-forming substances. Recommendations typically include consuming at least 2 to 3 litres of fluids per day, with specific targets tailored to individual needs based on factors such as age, body weight, and activity level^{13,14}.

- **Sodium Restriction:** Limiting dietary sodium intake is crucial for reducing urinary calcium excretion and lowering the risk of calcium-based stone formation. Patients should be advised to avoid processed foods, canned soups, and salty snacks, while emphasizing the importance of reading food labels and choosing low-sodium alternatives^{10,12,33,34}.
- **Oxalate and Calcium Intake:** While dietary oxalate is a contributing factor to calcium oxalate stone formation, indiscriminate restriction of oxalate-rich foods may not be necessary for all patients. Instead, a balanced approach focusing on portion control and dietary variety is recommended. Patients at risk of calcium oxalate stones should be encouraged to consume calcium-rich foods alongside oxalate-containing foods to mitigate oxalate absorption and reduce stone formation risk^{12,16,17,19}.
- **Protein Moderation:** Animal protein intake, particularly purine-rich foods, should be moderated to prevent uric acid stone formation. Patients may benefit from substituting animal proteins with plant-based alternatives and incorporating low-purine sources of protein into their diet. However, protein restriction should be individualised based on factors such as dietary preferences, renal function, and comorbidities^{17,28}.
- **Citrate Supplementation:** In some cases, supplementation with citrate may be beneficial for preventing calcium-based stone formation. Citrate inhibits crystal formation and aggregation by binding to calcium in the urine, thereby increasing urinary citrate levels and reducing stone recurrence risk. Patients with recurrent calcium oxalate or calcium phosphate stones may benefit from citrate supplementation under the guidance of a healthcare provider^{15,17,27,34,35}.
- **Calcium Supplementation:** Contrary to popular belief, adequate dietary calcium intake may actually reduce the risk of kidney stone formation. Calcium binds with oxalate in the gastrointestinal tract, preventing its absorption and subsequent excretion in the urine. Therefore, patients should be encouraged to consume calcium-rich foods such as dairy products, fortified plant-based alternatives, and leafy green vegetables as part of a balanced diet. However, calcium supplements should be used cautiously, as excessive supplementation may increase stone formation risk in some individuals^{12,13,15,28,36}.

Management Strategies

Dietary Modification: For patients with a history of kidney stones, dietary modification plays a crucial role in preventing stone recurrence. Healthcare providers should conduct a comprehensive dietary assessment to identify potential risk factors and tailor recommendations to individual needs. This may involve working with a registered dietitian to develop personalised meal plans and dietary strategies^{10,14,16,29}.

- **Monitoring and Follow-up:** Regular monitoring of urinary parameters, such as urine volume, pH, and stone-forming substance concentrations, can help track treatment progress and guide dietary interventions. Patients should be advised to maintain a urine output of at least 2 litres per day and to monitor their urine pH at home using urinary pH test strips. Follow-up appointments with healthcare providers allow for ongoing assessment and adjustment of dietary recommendations based on patient response and changes in clinical status^{21,29}.
- **Education and Counselling:** Patient education is essential for fostering adherence to dietary recommendations and promoting long-term behaviour change. Healthcare providers should provide clear and practical guidance on dietary modifications, emphasising the importance of consistency and persistence. Patients should be encouraged to maintain a balanced diet rich in fruits, vegetables, whole grains, and lean proteins while avoiding excessive intake of stone-forming substances³⁷.
- **Lifestyle Modification:** In addition to dietary interventions, lifestyle modifications such as weight management, regular physical activity, and stress reduction can contribute to kidney stone prevention and overall urinary tract health. Patients should be counselled on the importance of maintaining a healthy lifestyle and adopting sustainable habits that support their long-term well-being^{4,7,9,38}.
- **Medication Adherence:** In addition to dietary modifications, some patients may require pharmacological interventions to manage underlying metabolic abnormalities contributing to stone formation. Medications such as thiazide diuretics, potassium citrate, and allopurinol may be prescribed to reduce urinary calcium excretion, increase urinary citrate levels, or lower uric acid levels, respectively. Healthcare providers should educate patients about the importance of medication adherence and potential side effects, as well as monitor their response to treatment through regular follow-up appointments and laboratory testing^{16,21,29}.

- **Calcium vs. Non-Calcium Stones:** Different types of kidney stones require tailored dietary approaches. For example, patients with calcium oxalate stones may benefit from a diet low in oxalate and sodium and adequate in calcium, while those with uric acid stones may require a diet low in purines and acidic urine. Healthcare providers should conduct comprehensive metabolic evaluations, including stone analysis and urinary chemistry testing, to identify the underlying composition and aetiology of kidney stones and guide personalised dietary recommendations accordingly^{16,20,21,39}.

Future Directions

As our comprehension of kidney stone formation and management continues to evolve, several promising avenues for future investigation emerge, each poised to advance our understanding and treatment of this prevalent condition. Precision medicine, a burgeoning field leveraging genetic profiling and personalised dietary recommendations, holds significant promise in identifying individuals predisposed to kidney stone formation based on genetic susceptibilities. By tailoring interventions to individual genetic profiles, precision medicine approaches have the potential to optimise treatment outcomes and reduce the burden of kidney stones on affected individuals.

Furthermore, exploring the intricate relationship between the gut microbiome and urinary stone formation presents a compelling area for future research. Emerging evidence suggests that the composition of the gut microbiome influences oxalate metabolism and urinary oxalate excretion, thereby affecting the risk of calcium oxalate stone formation. Investigating strategies to modulate the gut microbiome through dietary interventions, probiotics, or faecal microbiota transplantation may yield innovative therapeutic approaches for kidney stone prevention and management.

Nutraceuticals and dietary supplements containing bioactive compounds such as polyphenols, flavonoids, and antioxidants represent another area ripe for exploration. Preclinical studies have demonstrated the potential of these compounds to inhibit crystal formation and promote urinary stone dissolution through various mechanisms. Future research should focus on elucidating the efficacy and safety of nutraceuticals as adjunctive therapies for kidney stone prevention and management in human subjects, with a particular emphasis on identifying optimal dosing regimens and assessing long-term outcomes.

In parallel, the integration of digital health technologies holds promise in revolutionising kidney stone

management. Mobile applications, wearable devices, and telemedicine platforms offer opportunities to enhance patient engagement, self-monitoring, and adherence to dietary recommendations. By providing real-time feedback to patients and healthcare providers, digital health interventions have the potential to improve the effectiveness of kidney stone management strategies and optimise patient outcomes.

Long-term outcome assessments, encompassing patient-reported outcomes and quality of life measures, represent an essential component of future research endeavours in kidney stone management. By evaluating the holistic impact of dietary modifications on individuals living with kidney stones, researchers can gain valuable insights into the long-term efficacy and sustainability of dietary interventions. Ultimately, by addressing these diverse areas of inquiry, future research endeavours aim to advance our understanding of kidney stone pathophysiology and identify innovative approaches to optimise patient care and outcomes.

Conclusion

In conclusion, dietary interventions play a crucial role in the prevention and management of kidney stones. By implementing targeted dietary modifications tailored to individual patient needs, healthcare providers can effectively reduce the risk of stone formation and recurrence, improve treatment outcomes, and enhance overall urinary tract health. Empowering patients with knowledge and support to make informed dietary choices is essential for achieving long-term success in kidney stone management. Ongoing collaboration between patients and healthcare providers facilitates personalised care and optimises adherence to dietary recommendations, ultimately reducing the burden of kidney stones on individuals and healthcare systems alike.

Author's Contribution:

DMP: Acquisition of data, analysis of data, preparation of manuscript and review of manuscript.

Conflict of Interest: None

Source of funding: None

Declaration of Generative AI and AI-Assisted Technologies in the Writing Process: None

References

- Nimavat A, Trivedi A, Yadav A, Patel P. A review on kidney stone and its herbal treatment. *Journal of Pharmacy and Pharmacology*. 2022;10:195-209. [Google Scholar]
- Sohgaura A, Bigoniya P. A review on epidemiology and etiology of renal stone. *Am J Drug Discov Dev*. 2017 Mar 15;7(2):54-62. [Google Scholar]
- Aggarwal R, Srivastava A, Jain SK, Sud R, Singh R. Renal stones: a clinical review. *EMJ Urol*. 2017 Mar;5(1):98-103. [Google Scholar]
- Sofia NH, Walter TM, Sanatorium T. Prevalence and risk factors of kidney stone. *Global Journal For Research Analysis*. 2016 Mar 5;5(3):183-7. [Google Scholar]
- Awasthi M, Malhotra SR. Renal Calculi-Prevalence, Risk Factors and Dietary Management: A Review. *Indian Journal of Nutrition and Dietetics*. 2016 Apr;53(2):229. [Google Scholar]
- Shamsuddeen SB, Bano R, Shammari EA, Enezi SH. Risk factors of renal calculi. *IOSR Journal of Dental and Medical Sciences*. 2013;11(6):90-5. [Google Scholar]
- Muhbes FJ. Risk factors for renal stone formation. [Google Scholar]
- Navise NH, Mokwatsi GG, Gafane-Mateman LF, Fabian J, Lammertyn L. Kidney dysfunction: prevalence and associated risk factors in a community-based study from the North West Province of South Africa. *BMC nephrology*. 2023 Jan 30;24(1):23. [Google Scholar] [Pubmed]
- Wang K, Ge J, Han W, Wang D, Zhao Y, Shen Y, Chen J, Chen D, Wu J, Shen N, Zhu S. Risk factors for kidney stone disease recurrence: a comprehensive meta-analysis. *BMC urology*. 2022 Apr 19;22(1):62. [Google Scholar] [Pubmed]
- Prezioso D, Strazzullo P, Lotti T, Bianchi G, Borghi L, Caione P, Carini M, Caudarella R, Gambaro G, Gelosa M, Guttilla A. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. *Archivio Italiano di Urologia Andrologia*. 2015;87(2):105-20. [Google Scholar] [Pubmed]
- Cheraghian B, Meysam A, Hashemi SJ, Hosseini SA, Malehi AS, Khazaeli D, Rahimi Z. Kidney stones and dietary intake in adults: a population-based study in southwest Iran. *BMC Public Health*. 2024 Apr 4;24(1):955. [Google Scholar] [Pubmed]
- Coello I, Sanchis P, Pieras EC, Grases F. Diet in different calcium oxalate kidney stones. *Nutrients*. 2023 Jun 2;15(11):2607. [Google Scholar] [Pubmed]
- Wang Z, Zhang Y, Wei W. Effect of dietary treatment and fluid intake on the prevention of recurrent calcium stones and changes in urine composition: A meta-analysis and systematic review. *PLoS One*. 2021 Apr 19;16(4):e0250257. [Google Scholar] [Pubmed]
- Fink HA, Akornor JW, Garimella PS, MacDonald R, Cutting A, Rutks IR, Monga M, Wilt TJ. Diet, fluid, or supplements for secondary prevention of nephrolithiasis: a systematic review and meta-analysis

of randomized trials. *European urology*. 2009 Jul 1;56(1):72-80. [Google Scholar] [Pubmed]

15. Trinchieri A, Lizzano R, Marchesotti F, Zanetti G. Effect of potential renal acid load of foods on urinary citrate excretion in calcium renal stone formers. *Urological research*. 2006 Feb;34(1):1-7. [Google Scholar] [Pubmed]

16. Sowers MR, Jannausch M, Wood C, Pope SK, Lachance LL, Peterson B. Prevalence of renal stones in a population-based study with dietary calcium, oxalate, and medication exposures. *American journal of epidemiology*. 1998 May 15;147(10):914-20. [Google Scholar] [Pubmed]

17. Hiatt RA, Ettinger B, Caan B, Quesenberry Jr CP, Duncan D, Citron JT. Randomized controlled trial of a low animal protein, high fiber diet in the prevention of recurrent calcium oxalate kidney stones. *American journal of epidemiology*. 1996 Jul 1;144(1):25-33. [Google Scholar] [Pubmed]

18. Leonetti F, Dussol B, Berthezene P, Thirion X, Berland Y. Dietary and urinary risk factors for stones in idiopathic calcium stone formers compared with healthy subjects. *Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association-European Renal Association*. 1998 Mar 1;13(3):617-22. [Google Scholar] [Pubmed]

19. Hess B. 'Bad dietary habits' and recurrent calcium oxalate nephrolithiasis. *Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association-European Renal Association*. 1998;13(4):1033-8. [Google Scholar] [Pubmed]

20. McKay CP. Renal stone disease. *Pediatrics in Review*. 2010 May 1;31(5):179-88. [Google Scholar] [Pubmed]

21. (21) Heilberg IP, Schor N. Renal stone disease: causes, evaluation and medical treatment. *Arquivos Brasileiros de Endocrinologia & Metabologia*. 2006;50:823-31. [Google Scholar] [Pubmed]

22. Alatab S, Pourmand G, El Howairis ME, Buchholz N, Najafi I, Pourmand MR, Mashhadi R, Pourmand N. National profiles of urinary calculi (a comparison between developing and developed worlds). [Google Scholar] [Pubmed]

23. Moftakhar L, Jafari F, Ghoddusi Johari M, Rezaeianzadeh R, Hosseini SV, Rezaianzadeh A. Prevalence and risk factors of kidney stone disease in population aged 40–70 years old in Kharameh cohort study: a cross-sectional population-based study in southern Iran. *BMC urology*. 2022 Dec 19;22(1):205. [Google Scholar] [Pubmed]

24. Bhattacharya S, Joshi NK, Jain YK, Bajpai N, Bhardwaj P, Chaturvedi M, Patil MS, Gaidhane A, Syed ZQ, Saxena D. Dietary determinants of renal calculi: a case-control study from a Tertiary Care Hospital of Western Rajasthan. *Cureus*. 2022 Nov 13;14(11). [Google Scholar] [Pubmed]

25. Mathiyalagan P, Neelakantan A, Balusamy K, Vasudevan K, Cherian J, Sunderamurthy B. A case-control study on environmental and biological risk factors for renal calculi persisting in a coastal Union Territory, India. *Journal of family medicine and primary care*. 2017 Jan 1;6(1):126-30. [Google Scholar] [Pubmed]

26. Han H, Segal AM, Seifter JL, Dwyer JT. Nutritional management of kidney stones (nephrolithiasis). *Clinical nutrition research*. 2015 Jul 1;4(3):137-52. [Google Scholar] [Pubmed]

27. Kossoff EH, Pyzik PL, Furth SL, Hladky HD, Freeman JM, Vining EP. Kidney stones, carbonic anhydrase inhibitors, and the ketogenic diet. *Epilepsia*. 2002 Oct;43(10):1168-71. [Google Scholar] [Pubmed]

28. Giannini S, Nobile M, Sartori L, Dalle Carbonare L, Ciuffreda M, Corrò P, D'Angelo A, Calò L, Crepaldi G. Acute effects of moderate dietary protein restriction in patients with idiopathic hypercalciuria and calcium nephrolithiasis. *The American journal of clinical nutrition*. 1999 Feb 1;69(2):267-71. [Google Scholar] [Pubmed]

29. Heilberg IP. Update on dietary recommendations and medical treatment of renal stone disease. *Nephrology Dialysis Transplantation*. 2000 Jan 1;15(1):117-23. [Google Scholar] [Pubmed]

30. Badro DA. Chronic kidney disease management in developing countries. In *Handbook of Medical and Health Sciences in Developing Countries: Education, Practice, and Research* 2023 Apr 20 (pp. 1-146). Cham: Springer International Publishing. [Google Scholar]

31. Shukla AR, Austin PF, Herndon CA, editors. *The Kelalis-King-Belman Textbook of Clinical Pediatric Urology Study Guide*. CRC Press; 2008 Sep 17. [Google Scholar]

32. Woolfson RG, Mansell MA. Hyperoxaluria and renal calculi. *Postgraduate medical journal*. 1994 Oct;70(828):695. [Google Scholar] [Pubmed]

33. Johri N, Cooper B, Robertson W, Choong S, Rickards D, Unwin R. An update and practical guide to renal stone management. *Nephron Clinical Practice*. 2010 Jul 2;116(3):c159-71. [Google Scholar] [Pubmed]

34. Grases F, Costa-Bauza A, Prieto RM. Renal lithiasis and nutrition. *Nutrition journal*. 2006 Sep 6;5(1):23. [Google Scholar] [Pubmed]

35. Costa-Bauzá A, Ramis M, Montesinos V, Grases F, Conte A, Pizá P, Pieras E. Type of renal calculi: variation with age and sex. *World journal of urology*. 2007 Aug;25(4):415-21. [Google Scholar] [Pubmed]

36. Goldfarb S. Dietary factors in the pathogenesis and prophylaxis of calcium nephrolithiasis. *Kidney international*. 1988 Oct 1;34(4):544-55. [Google Scholar] [Pubmed]
37. Alghamdi S, Alamri A, Alzahrani RA, Alghamdi AH, Alghamdi AA, Alghamdi AA, Alghamdi RJ. Awareness about symptoms and role of diet in renal stones among general population of Alba City. *The Egyptian Journal of Hospital Medicine*. 2018 Jan 1;70(1):50-9. [Google Scholar]
38. Krieger JN, Kronmal RA, Coxon V, Wortley P, Thompson L, Sherrard DJ. Dietary and behavioral risk factors for urolithiasis: potential implications for prevention. *American journal of kidney diseases*. 1996 Aug 1;28(2):195-201. [Google Scholar] [Pubmed]
39. Wilkinson H. Clinical investigation and management of patients with renal stones. *Annals of clinical biochemistry*. 2001 May 1;38(3):180-7. [Google Scholar] [Pubmed]