Characterisation of Antibiotic Genes of Acinetobacter baumannii Isolated from Patients in Baghdad Hospitals

  • Balqees Yahya Najm Basic Science Department, Medicine College, Ibnsina of Medical and Pharmaceutical Sciences University, Iraq.
  • Omer Faris Hasan Basic Science Department, Medicine College, Ibnsina of Medical and Pharmaceutical Sciences University, Iraq.
  • Hala Mohmmed Majeed Basic Science Department, Medicine College, Ibnsina of Medical and Pharmaceutical Sciences University, Iraq.
  • Sarab Hussein Khallel Basic Science Department, Medicine College, Ibnsina of Medical and Pharmaceutical Sciences University, Iraq.
Keywords: Acinetobacter baumannii, Antibiotics, Resistance, Genes, AMEs

Abstract

Introduction: The gram-negative bacterium known as Acinetobacter baumannii is frequently found in soil and water, as well as in samples taken from animals and humans. This study isolated and identified
50 urine samples from four Baghdad educational hospitals. Method: Biochemical testing, selective synthetic media (CHROMagar), and polymerase chain reaction identified all bacterial samples. Only 20
isolates were identified as A. baumannii using a primer targeting the blaOxa-51 gene. Antibiotic susceptibility was tested using disc diffusion with eight antibiotics.
Results and Conclusion: The susceptibility testing of A. baumannii to antibiotics revealed that this bacterium had a higher resistance towards cefotaxime (8, 40%), followed by imipenem (6, 30%), gentamycin (5,
15%), and trimethoprim (2, 10%). The resistance was the same for both tetracycline and tobramycin (3, 15%). In contrast, the antibiotics ampicillin-sulbactam and doxycycline encountered a lower level of resistance, specifically 1% and 5% respectively. Analysis of 20 DNA samples of A. baumannii revealed the presence of OmpA and CsuE genes, with a gene size of 168 bp and 162 bp, respectively. The percentage of these genes in the samples was found to be 60%.

How to cite this article:
Hasan O F, Najm B Y, Majeed H M, Khallel S H. Characterisation of Antibiotic Genes of Acinetobacter baumannii Isolated from Patients in Baghdad Hospitals. J Commun Dis. 2023;55(4):38-45.

DOI: https://doi.org/10.24321/0019.5138.202352

References

Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and

resistance. Int J Antimicrob Agents. 2010;35(3):21926. [PubMed] [Google Scholar]

Ansari H, Doosti A, Kargar M, Bijanzadeh M, Jaafarinia M. Cloning of ompA gene from Acinetobacter baumannii

into the eukaryotic expression vector pBudCE4.1 as DNA vaccine. Indian J Microbiol. 2018;58(2):174-81.

[PubMed] [Google Scholar]

Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical,

and epidemiological features. Clin Microbiol Rev. 1996;9(2):148-65. [PubMed] [Google Scholar]

Ansari H, Doosti A, Kargar M, Bizhanzadeh M, Jafarinya M. Cloning and sequencing of the ompA and smpA

virulence genes of Acentobacter baumannii isolated in clinical samples. Armaghane Danesh. 2017;21(12):1207-

[Google Scholar]

Snitkin ES, Zelazny AM, Montero CI, Stock F, Mijares L; NISC Comparative Sequence Program; Murray PR, Segre

JA. Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii. Proc

Natl Acad Sci U S A. 2011;108(33):13758-63. [PubMed] [Google Scholar]

Wang T, Costa V, Jenkins SG, Hartman BJ, Westblade LF. Acinetobacter radioresistens infection with bacteremia

and pneumonia. IDCases. 2019;15:e00495. [PubMed] [Google Scholar]

Abdelaal AM, Mahmood SS. The role of efflux Pump adeJ gene in levofloxacin resistance among A.

baumannii. Syst Rev Pharm. 2020;11(10):1105-10. [Google Scholar]

Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors,

virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect

Drug Resist. 2018 Nov 15:11:2277-99. [PubMed] [Google Scholar]

Greene C, Wu J, Rickard AH, Xi C. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett Appl Microbiol. 2016;63(4):233-9. [PubMed] [Google

Scholar]

Hall CW, Mah TF. Molecular mechanisms of biofilmbased antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41(3):276-301. [PubMed] [Google Scholar]

Zeighami H, Valadkhani F, Shapouri R, Samadi E, Haghi F. Virulence characteristics of multidrug resistant

biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis.

;19(1):629. [PubMed] [Google Scholar]

Colquhoun JM, Rather PN. Insights into mechanisms of biofilm formation in Acinetobacter baumannii and

implications for uropathogenesis. Front Cell Infect Microbiol. 2020;10:253. [PubMed] [Google Scholar]

Bergey DH, Holt JG. Bergey’s manual of determinative bacteriology. 9th ed. Baltimore: Lippincott Williams

and Wilkins; 1994. [Google Scholar]

Macfaddin JF. Biochemical tests for identification of medical bacteria. Baltimore: Lippincott Williams & Williams; 2000.

CLSI. Performance standards for antimicrobial susceptibility testing. 32nd ed. CLSI document M100-

ED32. Wayne, PA: Clinical and Laboratory Standards Institute; 2022.

Falah F, Shokoohizadeh L, Adabi M. Molecular identification and genotyping of Acinetobacter baumannii isolated from burn patients by PCR and ERICPCR. Scars Burn Heal. 2019 Feb;5:2059513119831369.

[PubMed] [Google Scholar]

Birgani MT, Bijanzadeh M, Ansari H. Antibiotic characterization of Acinetobacter baumannii isolated

from clinical samples and production of recombinant OmpA from resistant strains. Jundishapur J Microbiol.

;11(12):e78773. [Google Scholar]

Musyoki VM, Masika MM, Mutai W, Wilfred G, Kuria A, Muthini F. Antimicrobial susceptibility pattern

of Acinetobacter isolates from patients in Kenyatta National Hospital, Nairobi, Kenya. Pan Afr Med J. 2019;33(1):146. [PubMed] [Google Scholar]

Khatun MN, Farzana R, Lopes BS, Shamsuzzaman SM. Molecular characterization and resistance profile of

nosocomial Acinetobacter baumannii in intensive care unit of tertiary care hospital in Bangladesh. Bangladesh

Med Res Counc Bull. 2015;41(2):101-7. [PubMed] [Google Scholar]

Yang CH, Su PW, Moi SH, Chuang LY. Biofilm formation in Acinetobacter baumannii: genotype-phenotype

correlation. Molecules. 2019;24(10):1849. [PubMed] [Google Scholar]

Anane YA, Apalata T, Vasaikar S, Okuthe GE, Songca S. Molecular detection of carbapenemase-encoding

genes in multidrug-resistant Acinetobacter baumannii clinical isolates in South Africa. Int J Microbiol.

;2020:7380740. [PubMed] [Google Scholar]

Tarafdar F, Jafari B, Azimi T. Evaluating the antimicrobial resistance patterns and molecular frequency of

blaoxa-48 and blaGES-2 genes in Pseudomonas aeruginosa and Acinetobacter baumannii strains

isolated from burn wound infection in Tehran, Iran. New Microbes New Infect. 2020;37:100686. [PubMed]

[Google Scholar]

El-Badawy MF, Abdelwahab SF, Alghamdi SA, Shohayeb MM. Characterization of phenotypic and genotypic

traits of carbapenem-resistant Acinetobacter baumannii clinical isolates recovered from a tertiary

care hospital in Taif, Saudi Arabia. Infect Drug Resist.2019;12:3113-24. [PubMed] [Google Scholar]

Thummeepak R, Kongthai P, Leungtongkam U, Sitthisak S. Distribution of virulence genes involved

in biofilm formation in multi-drug resistant Acinetobacter baumannii clinical isolates. Int Microbiol.

;19(2):121-9. [PubMed] [Google Scholar]

Dafopoulou K, Tsakris A, Pournaras S. Changes in antimicrobial resistance of clinical isolates of

Acinetobacter baumannii group isolated in Greece, 2010–2015. J Med Microbiol. 2018;67(4):496-8.

[PubMed] [Google Scholar]

Abdallah EM, Ahamed F, Al-Omari AS. Antibiotic susceptibility patterns of some clinical isolates from

Al-Rass General Hospital. Int J Biosci. 2015;6(9):47-54. [Google Scholar]

Maraki S, Mantadakis E, Mavromanolaki VE, Kofteridis DP, Samonis G. A 5-year surveillance study on

antimicrobial resistance of Acinetobacter baumannii clinical isolates from a tertiary Greek hospital. Infect

Chemother. 2016;48(3):190-8. [PubMed] [Google Scholar]

Ranjbar R, Farahani A. Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL,

ESBL, and tetracycline resistance genes in multidrugresistant Acinetobacter baumannii isolated from burn

wound infections in Iran. Antimicrob Resist Infect Control. 2019;8:172. [PubMed] [Google Scholar

Lukovic B, Gajic I, Dimkic I, Kekic D, Zornic S, Pozder T, Radisavljevic S, Opavski N, Kojic M, Ranin L. The

first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: emergence of OXA-72,

OXA-23 and NDM-1-producing isolates. Antimicrob Resist Infect Control. 2020;9(1):101. [PubMed] [Google

Scholar]

Safari M, Saidijam M, Bahador A, Jafari R, Alikhani MY. High prevalence of multidrug resistance and metallobeta-lactamase (MbetaL) producing Acinetobacter baumannii isolated from patients in ICU wards,

Hamadan, Iran. J Res Health Sci. 2013;13(2):162-7. [PubMed] [Google Scholar]

Abd El-Baky RM, Farhan SM, Ibrahim RA, Mahran KM, Hetta HF. Antimicrobial resistance pattern and

molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in

Minia, Egypt. Alexandria Med J. 2020;56(1):4-13. [Google Scholar]

Abbas-Al-Khafaji ZK, Aubais-aljelehawy QH. Evaluation of antibiotic resistance and prevalence of multiantibiotic resistant genes among Acinetobacter baumannii strains isolated from patients admitted to AlYarmouk Hospital. Cell Mol Biomed Rep. 2021;1(2):60-8. [Google Scholar]

Monfared AM, Rezaei A, Poursina F, Faghri J. Detection of genes involved in biofilm formation in MDR and

XDR Acinetobacter baumannii isolated from human clinical specimens in Isfahan, Iran. Arch Clin Infect Dis.

;14(2):e85766. [Google Scholar]

Mohammed MA, Ahmed MT, Anwer BE, Aboshanab KM, Aboulwafa MM. Propranolol, chlorpromazine

and diclofenac restore susceptibility of extensively drug-resistant (XDR)-Acinetobacter baumannii to

fluoroquinolones. PloS One. 2020;15(8):e0238195. [PubMed] [Google Scholar]

As SG, Priyadarshini JV. CLSI based antibiogram profile and the detection of MDR and XDR strains of

Acinetobacter baumannii isolated from urine samples. Med J Islam Repub Iran. 2019;33:3. [PubMed] [Google

Scholar]

Salimizand H, Zomorodi AR, Mansury D, Khakshoor M, Azizi O, Khodaparast S, Baseri Z, Karami P,

Zamanlou S, Farsiani H, Amini Y, Moradi B, Meshkat Z, Salimizand H, Hasanzadeh S, Sadeghian H. Diversity

of aminoglycoside modifying enzymes and 16S rRNA methylases in Acinetobacter baumannii and

Acinetobacter nosocomialis species in Iran; wide distribution of aadA1 and armA. Infect Genet Evol.

;66:195-9. [PubMed] [Google Scholar]

Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii antibiotic resistance

mechanisms. Pathogens. 2021;10(3):373. [PubMed] [Google Scholar]

Wang YC, Huang TW, Yang YS, Kuo SC, Chen CT, Liu CP, Liu YM, Chen TL, Chang FY, Wu SH, How CK, Lee YT.

Biofilm formation is not associated with worse outcome in Acinetobacter baumannii bacteraemic pneumonia.

Sci Rep. 2018;8(1):7289. [PubMed] [Google Scholar]

Khoshnood S, Savari M, Montazeri EA, Sheikh AF. Survey on genetic diversity, biofilm formation, and

detection of colistin resistance genes in clinical isolates of Acinetobacter baumannii. Infect Drug Resist.

;13:1547-58. [PubMed] [Google Scholar]

Ghasemi E, Ghalavand Z, Goudarzi H, Yeganeh F, Hashemi A, Dabiri H, Mirsamadi ES, Foroumand M.

Phenotypic and genotypic investigation of biofilm formation in clinical and environmental isolates

of Acinetobacter baumannii. Arch Clin Infect Dis. 2018;13(4):e12914. [Google Scholar]

Mohsin MR, AL-Rubaii BA. Bacterial growth and antibiotic sensitivity of Proteus mirabilis treated with

anti-inflammatory and painkiller drugs. Biomedicine. 2023;43(2):728-34. [Google Scholar]

Jalil IS, Mohammad SQ, Mohsen AK, Al-Rubaii BA. Inhibitory activity of Mentha spicata oils on biofilms

of Proteus mirabilis isolated from burns. Biomedicine. 2023;43(2):748-52. [Google Scholar]

Saleh TH, Hashim ST, Malik SN, Al-Rubaii BA. The impact some of nutrients on swarming phenomenon

and detection the responsible gene RsbA in clinical isolates of Proteus mirabilis. Int J Res Pharm Sci.

;11(1):437-44.

Husain AG, Alrubaii BA. Molecular detection and expression of virulence factor encoding genes of

Pseudomonas aeruginosa isolated from clinical samples. Biomedicine. 2023;43(5):1514-9. [Google

Scholar]

Al-Saadi HK, Awad HA, Saltan ZS, Hasoon BA, Abdulwahab AI, Al-Azawi KF, Al-Rubaii BA. Antioxidant

and antibacterial activities of Allium sativum ethanol extract and silver nanoparticles. Trop J Nat Prod Res.

;7(6):3105-10. [Google Scholar]

Abbas MS, Ahmed AG, Ali SQ, AL-Rubaii BA. Immunological inflammatory factors in patients

diagnosed with COVID-19. Biomedicine. 2023;43(1):230- 5. [Google Scholar]

Al-Humairi RM, Muhsin HY, Ad’hiah AH. Severity of Coronavirus Disease 19: a profile of inflammatory

markers in Iraqi patients. Malays J Med Health Sci. 2022;18(1).91-8. [Google Scholar]

Hassoon AH. Evaluating the role of mitochondrial DNA quantification in blastocyst transfers potential.

AIP Conf Proc. 2022;2386(1):020046. [Google Scholar]

Buniya HK, Hassoon AH, Hameed AK. Molecular geneticvariability in the d-loop region for females with breast

cancer and the effect of the chemotherapy. Res J Pharm Technol. 2018;11(9):3787-92. [Google Scholar]

Rasoul LM, Marhoon AA, Albaayit SF, Ali RW, Saleh TH, Al-Rubaii BA. Cytotoxic effect of cloned EGFP gene

on NCI-H727 cell line via genetically engineered gene transfer system. Biomedicine. 2022;42(5):938-42.

[Google Scholar]

Bresam S, Al-Jumaily RM, Karim GF, Al-Rubaii BA. Polymorphism in SNP rs972283 of the KLF14 gene

and genetic disposition to peptic ulcer. Biomedicine. 2023;43(1):216-20. [Google Scholar]

Ismael MK, Qaddoori YB, Shaban MN, Laftaah AR.The immunohistochemical staining of vimentin and

e-cadherin in bladder cancer patients infected with hepatitis C virus. J Pure Appl Microbiol. 2023;17(2):1009-

[Google Scholar]

Bresam S, Alhumairi RM,Hade IM, Al-Rubaii BA. Genetic mutation rs972283 of the KLF14 gene and the incidence of gastric cancer. Biomedicine (India). 2023;43(4):1256-60. [Google Scholar]

Hamoode RH, Alkubaisy SA, Sattar DA, Hamzah SS, Saleh TH, Al-Rubaii BA. Detection of anti-testicular antibodies among infertile males using indirect immunofluorescent

technique. Biomedicine. 2022;42(5):978-82. [Google Scholar]

Rasoul LM, Allami RH, Alshibib AL, Al-Rubaii BA, Sale TH. Expression and cytotoxic effect of recombinant

Newcastle Disease Virus (rNDV) vector expressing enhanced green fluorescent gene in JHH5 cell line.

Biomedicine. 2023;43(1):205-9. [Google Scholar]

Jawad NK, Numan AT, Ahmed AG, Saleh TH, Al-Rubaii BA. IL-38 gene expression: a new player in Graves’

ophthalmopathy patients in Iraq. Biomedicine. 2023;43(1):210-5. [Google Scholar]

Al-Humairi RM, Al-Musawi MT, Ad’hiah AH. Bidirectional expression of Toll-like receptor 7 gene in urinary

bladder cancer and urinary tract infection of Iraqi patients. Gene Rep. 2019;17:100491. [Google Scholar]

Published
2024-02-14