Characterisation of Antibiotic Genes of Acinetobacter baumannii Isolated from Patients in Baghdad Hospitals
Abstract
Introduction: The gram-negative bacterium known as Acinetobacter baumannii is frequently found in soil and water, as well as in samples taken from animals and humans. This study isolated and identified
50 urine samples from four Baghdad educational hospitals. Method: Biochemical testing, selective synthetic media (CHROMagar), and polymerase chain reaction identified all bacterial samples. Only 20
isolates were identified as A. baumannii using a primer targeting the blaOxa-51 gene. Antibiotic susceptibility was tested using disc diffusion with eight antibiotics.
Results and Conclusion: The susceptibility testing of A. baumannii to antibiotics revealed that this bacterium had a higher resistance towards cefotaxime (8, 40%), followed by imipenem (6, 30%), gentamycin (5,
15%), and trimethoprim (2, 10%). The resistance was the same for both tetracycline and tobramycin (3, 15%). In contrast, the antibiotics ampicillin-sulbactam and doxycycline encountered a lower level of resistance, specifically 1% and 5% respectively. Analysis of 20 DNA samples of A. baumannii revealed the presence of OmpA and CsuE genes, with a gene size of 168 bp and 162 bp, respectively. The percentage of these genes in the samples was found to be 60%.
How to cite this article:
Hasan O F, Najm B Y, Majeed H M, Khallel S H. Characterisation of Antibiotic Genes of Acinetobacter baumannii Isolated from Patients in Baghdad Hospitals. J Commun Dis. 2023;55(4):38-45.
DOI: https://doi.org/10.24321/0019.5138.202352
References
Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and
resistance. Int J Antimicrob Agents. 2010;35(3):21926. [PubMed] [Google Scholar]
Ansari H, Doosti A, Kargar M, Bijanzadeh M, Jaafarinia M. Cloning of ompA gene from Acinetobacter baumannii
into the eukaryotic expression vector pBudCE4.1 as DNA vaccine. Indian J Microbiol. 2018;58(2):174-81.
[PubMed] [Google Scholar]
Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical,
and epidemiological features. Clin Microbiol Rev. 1996;9(2):148-65. [PubMed] [Google Scholar]
Ansari H, Doosti A, Kargar M, Bizhanzadeh M, Jafarinya M. Cloning and sequencing of the ompA and smpA
virulence genes of Acentobacter baumannii isolated in clinical samples. Armaghane Danesh. 2017;21(12):1207-
[Google Scholar]
Snitkin ES, Zelazny AM, Montero CI, Stock F, Mijares L; NISC Comparative Sequence Program; Murray PR, Segre
JA. Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii. Proc
Natl Acad Sci U S A. 2011;108(33):13758-63. [PubMed] [Google Scholar]
Wang T, Costa V, Jenkins SG, Hartman BJ, Westblade LF. Acinetobacter radioresistens infection with bacteremia
and pneumonia. IDCases. 2019;15:e00495. [PubMed] [Google Scholar]
Abdelaal AM, Mahmood SS. The role of efflux Pump adeJ gene in levofloxacin resistance among A.
baumannii. Syst Rev Pharm. 2020;11(10):1105-10. [Google Scholar]
Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors,
virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect
Drug Resist. 2018 Nov 15:11:2277-99. [PubMed] [Google Scholar]
Greene C, Wu J, Rickard AH, Xi C. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett Appl Microbiol. 2016;63(4):233-9. [PubMed] [Google
Scholar]
Hall CW, Mah TF. Molecular mechanisms of biofilmbased antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41(3):276-301. [PubMed] [Google Scholar]
Zeighami H, Valadkhani F, Shapouri R, Samadi E, Haghi F. Virulence characteristics of multidrug resistant
biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis.
;19(1):629. [PubMed] [Google Scholar]
Colquhoun JM, Rather PN. Insights into mechanisms of biofilm formation in Acinetobacter baumannii and
implications for uropathogenesis. Front Cell Infect Microbiol. 2020;10:253. [PubMed] [Google Scholar]
Bergey DH, Holt JG. Bergey’s manual of determinative bacteriology. 9th ed. Baltimore: Lippincott Williams
and Wilkins; 1994. [Google Scholar]
Macfaddin JF. Biochemical tests for identification of medical bacteria. Baltimore: Lippincott Williams & Williams; 2000.
CLSI. Performance standards for antimicrobial susceptibility testing. 32nd ed. CLSI document M100-
ED32. Wayne, PA: Clinical and Laboratory Standards Institute; 2022.
Falah F, Shokoohizadeh L, Adabi M. Molecular identification and genotyping of Acinetobacter baumannii isolated from burn patients by PCR and ERICPCR. Scars Burn Heal. 2019 Feb;5:2059513119831369.
[PubMed] [Google Scholar]
Birgani MT, Bijanzadeh M, Ansari H. Antibiotic characterization of Acinetobacter baumannii isolated
from clinical samples and production of recombinant OmpA from resistant strains. Jundishapur J Microbiol.
;11(12):e78773. [Google Scholar]
Musyoki VM, Masika MM, Mutai W, Wilfred G, Kuria A, Muthini F. Antimicrobial susceptibility pattern
of Acinetobacter isolates from patients in Kenyatta National Hospital, Nairobi, Kenya. Pan Afr Med J. 2019;33(1):146. [PubMed] [Google Scholar]
Khatun MN, Farzana R, Lopes BS, Shamsuzzaman SM. Molecular characterization and resistance profile of
nosocomial Acinetobacter baumannii in intensive care unit of tertiary care hospital in Bangladesh. Bangladesh
Med Res Counc Bull. 2015;41(2):101-7. [PubMed] [Google Scholar]
Yang CH, Su PW, Moi SH, Chuang LY. Biofilm formation in Acinetobacter baumannii: genotype-phenotype
correlation. Molecules. 2019;24(10):1849. [PubMed] [Google Scholar]
Anane YA, Apalata T, Vasaikar S, Okuthe GE, Songca S. Molecular detection of carbapenemase-encoding
genes in multidrug-resistant Acinetobacter baumannii clinical isolates in South Africa. Int J Microbiol.
;2020:7380740. [PubMed] [Google Scholar]
Tarafdar F, Jafari B, Azimi T. Evaluating the antimicrobial resistance patterns and molecular frequency of
blaoxa-48 and blaGES-2 genes in Pseudomonas aeruginosa and Acinetobacter baumannii strains
isolated from burn wound infection in Tehran, Iran. New Microbes New Infect. 2020;37:100686. [PubMed]
[Google Scholar]
El-Badawy MF, Abdelwahab SF, Alghamdi SA, Shohayeb MM. Characterization of phenotypic and genotypic
traits of carbapenem-resistant Acinetobacter baumannii clinical isolates recovered from a tertiary
care hospital in Taif, Saudi Arabia. Infect Drug Resist.2019;12:3113-24. [PubMed] [Google Scholar]
Thummeepak R, Kongthai P, Leungtongkam U, Sitthisak S. Distribution of virulence genes involved
in biofilm formation in multi-drug resistant Acinetobacter baumannii clinical isolates. Int Microbiol.
;19(2):121-9. [PubMed] [Google Scholar]
Dafopoulou K, Tsakris A, Pournaras S. Changes in antimicrobial resistance of clinical isolates of
Acinetobacter baumannii group isolated in Greece, 2010–2015. J Med Microbiol. 2018;67(4):496-8.
[PubMed] [Google Scholar]
Abdallah EM, Ahamed F, Al-Omari AS. Antibiotic susceptibility patterns of some clinical isolates from
Al-Rass General Hospital. Int J Biosci. 2015;6(9):47-54. [Google Scholar]
Maraki S, Mantadakis E, Mavromanolaki VE, Kofteridis DP, Samonis G. A 5-year surveillance study on
antimicrobial resistance of Acinetobacter baumannii clinical isolates from a tertiary Greek hospital. Infect
Chemother. 2016;48(3):190-8. [PubMed] [Google Scholar]
Ranjbar R, Farahani A. Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL,
ESBL, and tetracycline resistance genes in multidrugresistant Acinetobacter baumannii isolated from burn
wound infections in Iran. Antimicrob Resist Infect Control. 2019;8:172. [PubMed] [Google Scholar
Lukovic B, Gajic I, Dimkic I, Kekic D, Zornic S, Pozder T, Radisavljevic S, Opavski N, Kojic M, Ranin L. The
first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: emergence of OXA-72,
OXA-23 and NDM-1-producing isolates. Antimicrob Resist Infect Control. 2020;9(1):101. [PubMed] [Google
Scholar]
Safari M, Saidijam M, Bahador A, Jafari R, Alikhani MY. High prevalence of multidrug resistance and metallobeta-lactamase (MbetaL) producing Acinetobacter baumannii isolated from patients in ICU wards,
Hamadan, Iran. J Res Health Sci. 2013;13(2):162-7. [PubMed] [Google Scholar]
Abd El-Baky RM, Farhan SM, Ibrahim RA, Mahran KM, Hetta HF. Antimicrobial resistance pattern and
molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in
Minia, Egypt. Alexandria Med J. 2020;56(1):4-13. [Google Scholar]
Abbas-Al-Khafaji ZK, Aubais-aljelehawy QH. Evaluation of antibiotic resistance and prevalence of multiantibiotic resistant genes among Acinetobacter baumannii strains isolated from patients admitted to AlYarmouk Hospital. Cell Mol Biomed Rep. 2021;1(2):60-8. [Google Scholar]
Monfared AM, Rezaei A, Poursina F, Faghri J. Detection of genes involved in biofilm formation in MDR and
XDR Acinetobacter baumannii isolated from human clinical specimens in Isfahan, Iran. Arch Clin Infect Dis.
;14(2):e85766. [Google Scholar]
Mohammed MA, Ahmed MT, Anwer BE, Aboshanab KM, Aboulwafa MM. Propranolol, chlorpromazine
and diclofenac restore susceptibility of extensively drug-resistant (XDR)-Acinetobacter baumannii to
fluoroquinolones. PloS One. 2020;15(8):e0238195. [PubMed] [Google Scholar]
As SG, Priyadarshini JV. CLSI based antibiogram profile and the detection of MDR and XDR strains of
Acinetobacter baumannii isolated from urine samples. Med J Islam Repub Iran. 2019;33:3. [PubMed] [Google
Scholar]
Salimizand H, Zomorodi AR, Mansury D, Khakshoor M, Azizi O, Khodaparast S, Baseri Z, Karami P,
Zamanlou S, Farsiani H, Amini Y, Moradi B, Meshkat Z, Salimizand H, Hasanzadeh S, Sadeghian H. Diversity
of aminoglycoside modifying enzymes and 16S rRNA methylases in Acinetobacter baumannii and
Acinetobacter nosocomialis species in Iran; wide distribution of aadA1 and armA. Infect Genet Evol.
;66:195-9. [PubMed] [Google Scholar]
Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii antibiotic resistance
mechanisms. Pathogens. 2021;10(3):373. [PubMed] [Google Scholar]
Wang YC, Huang TW, Yang YS, Kuo SC, Chen CT, Liu CP, Liu YM, Chen TL, Chang FY, Wu SH, How CK, Lee YT.
Biofilm formation is not associated with worse outcome in Acinetobacter baumannii bacteraemic pneumonia.
Sci Rep. 2018;8(1):7289. [PubMed] [Google Scholar]
Khoshnood S, Savari M, Montazeri EA, Sheikh AF. Survey on genetic diversity, biofilm formation, and
detection of colistin resistance genes in clinical isolates of Acinetobacter baumannii. Infect Drug Resist.
;13:1547-58. [PubMed] [Google Scholar]
Ghasemi E, Ghalavand Z, Goudarzi H, Yeganeh F, Hashemi A, Dabiri H, Mirsamadi ES, Foroumand M.
Phenotypic and genotypic investigation of biofilm formation in clinical and environmental isolates
of Acinetobacter baumannii. Arch Clin Infect Dis. 2018;13(4):e12914. [Google Scholar]
Mohsin MR, AL-Rubaii BA. Bacterial growth and antibiotic sensitivity of Proteus mirabilis treated with
anti-inflammatory and painkiller drugs. Biomedicine. 2023;43(2):728-34. [Google Scholar]
Jalil IS, Mohammad SQ, Mohsen AK, Al-Rubaii BA. Inhibitory activity of Mentha spicata oils on biofilms
of Proteus mirabilis isolated from burns. Biomedicine. 2023;43(2):748-52. [Google Scholar]
Saleh TH, Hashim ST, Malik SN, Al-Rubaii BA. The impact some of nutrients on swarming phenomenon
and detection the responsible gene RsbA in clinical isolates of Proteus mirabilis. Int J Res Pharm Sci.
;11(1):437-44.
Husain AG, Alrubaii BA. Molecular detection and expression of virulence factor encoding genes of
Pseudomonas aeruginosa isolated from clinical samples. Biomedicine. 2023;43(5):1514-9. [Google
Scholar]
Al-Saadi HK, Awad HA, Saltan ZS, Hasoon BA, Abdulwahab AI, Al-Azawi KF, Al-Rubaii BA. Antioxidant
and antibacterial activities of Allium sativum ethanol extract and silver nanoparticles. Trop J Nat Prod Res.
;7(6):3105-10. [Google Scholar]
Abbas MS, Ahmed AG, Ali SQ, AL-Rubaii BA. Immunological inflammatory factors in patients
diagnosed with COVID-19. Biomedicine. 2023;43(1):230- 5. [Google Scholar]
Al-Humairi RM, Muhsin HY, Ad’hiah AH. Severity of Coronavirus Disease 19: a profile of inflammatory
markers in Iraqi patients. Malays J Med Health Sci. 2022;18(1).91-8. [Google Scholar]
Hassoon AH. Evaluating the role of mitochondrial DNA quantification in blastocyst transfers potential.
AIP Conf Proc. 2022;2386(1):020046. [Google Scholar]
Buniya HK, Hassoon AH, Hameed AK. Molecular geneticvariability in the d-loop region for females with breast
cancer and the effect of the chemotherapy. Res J Pharm Technol. 2018;11(9):3787-92. [Google Scholar]
Rasoul LM, Marhoon AA, Albaayit SF, Ali RW, Saleh TH, Al-Rubaii BA. Cytotoxic effect of cloned EGFP gene
on NCI-H727 cell line via genetically engineered gene transfer system. Biomedicine. 2022;42(5):938-42.
[Google Scholar]
Bresam S, Al-Jumaily RM, Karim GF, Al-Rubaii BA. Polymorphism in SNP rs972283 of the KLF14 gene
and genetic disposition to peptic ulcer. Biomedicine. 2023;43(1):216-20. [Google Scholar]
Ismael MK, Qaddoori YB, Shaban MN, Laftaah AR.The immunohistochemical staining of vimentin and
e-cadherin in bladder cancer patients infected with hepatitis C virus. J Pure Appl Microbiol. 2023;17(2):1009-
[Google Scholar]
Bresam S, Alhumairi RM,Hade IM, Al-Rubaii BA. Genetic mutation rs972283 of the KLF14 gene and the incidence of gastric cancer. Biomedicine (India). 2023;43(4):1256-60. [Google Scholar]
Hamoode RH, Alkubaisy SA, Sattar DA, Hamzah SS, Saleh TH, Al-Rubaii BA. Detection of anti-testicular antibodies among infertile males using indirect immunofluorescent
technique. Biomedicine. 2022;42(5):978-82. [Google Scholar]
Rasoul LM, Allami RH, Alshibib AL, Al-Rubaii BA, Sale TH. Expression and cytotoxic effect of recombinant
Newcastle Disease Virus (rNDV) vector expressing enhanced green fluorescent gene in JHH5 cell line.
Biomedicine. 2023;43(1):205-9. [Google Scholar]
Jawad NK, Numan AT, Ahmed AG, Saleh TH, Al-Rubaii BA. IL-38 gene expression: a new player in Graves’
ophthalmopathy patients in Iraq. Biomedicine. 2023;43(1):210-5. [Google Scholar]
Al-Humairi RM, Al-Musawi MT, Ad’hiah AH. Bidirectional expression of Toll-like receptor 7 gene in urinary
bladder cancer and urinary tract infection of Iraqi patients. Gene Rep. 2019;17:100491. [Google Scholar]
Copyright (c) 2024 Journal of Communicable Diseases (E-ISSN: 2581-351X & P-ISSN: 0019-5138)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.