Influence of Respiratory and Gut Microbiome on the Outcome of Tuberculosis: A Comprehensive Review
Abstract
Tuberculosis (TB) which is caused by the acid-fast bacterium Mycobacterium tuberculosis remains a major health challenge, affecting millions of people globally. It also remains a significant cause of morbidity and mortality specifically in countries with low and middle income. Recent research has shed light on the complex interplay between the human microbiome and TB, more particularly the respiratory and gut microbiota. Both respiratory and gut microbiome plays a regulatory role both in the incidence and progression of the disease. The intensive treatment protocols adopted for the treatment of tuberculosis also cause a greater impact on microbiome dysbiosis. Immunomodulatory properties of the microbiota play a major role in limiting the progression of the disease from latency and help to reduce the incidence of tuberculosis. This methodical comprehensive review was conducted across various scientific databases including PubMed, Scopus and Google Scholar employing keywords like “tuberculosis and microbiome”, “microbiome and immunomodulation” and “microbiome and therapeutics”. Research studies published from 2017 to 2023 were included in this review. This comprehensive review aims to explore the influence of the respiratory and gut Microbiome on the outcome of tuberculosis, highlighting the role of microbial dysbiosis, immune response modulation and potential therapeutic interventions.
How to cite this article:
Selvabai RAP & Shanmugam P. Influence of
Respiratory and Gut Microbiome on the Outcome
of Tuberculosis: A Comprehensive Review. J
Commun Dis. 2024;56(1):1-7.
References
Bagcchi S. WHO’s global tuberculosis report 2022. Lancet Microbe. 2023 Jan 1;4(1):e20. [PubMed] [Google Scholar]
Young VB. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ. 2017
Mar 15;356:j831. [PubMed] [Google Scholar]
Ogunrinola GA, Oyewale JO, Oshamika OO, Olasehinde GI. The human microbiome and its impacts on health.
Int J Microbiol. 2020 Jun 12;2020:8045646. [PubMed] [Google Scholar]
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health
and diseases. Signal Transduct Target Ther. 2022 Apr 23;7(1):135. [PubMed] [Google Scholar]
Barcik W, Boutin RC, Sokolowska M, Finlay BB. The role of lung and gut microbiota in the pathology of asthma.
Immunity. 2020 Feb 18;52(2):241-55. [PubMed] [Google Scholar]
Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H, Adams YF, Mikulski Z, Khorram N, Rosenthal P, Broide DH, Croft M. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway
tolerance. J Exp Med. 2013 Apr 8;210(4):775-88. [PubMed] [Google Scholar]
Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017 May;15(5):259-70. [PubMed] [Google Scholar]
Naidoo CC, Nyawo GR, Wu BG, Walzl G, Warren RM, Segal LN, Theron G. The microbiome and tuberculosis:
state of the art, potential applications, and defining the clinical research agenda. Lancet Respir Med.
;7(10):892-906. [PubMed] [Google Scholar]
Comberiati P, Di Cicco M, Paravati F, Pelosi U, Di Gangi A, Arasi S, Barni S, Caimmi D, Mastrorilli C, Licari A, Chiera F. The role of gut and lung microbiota in susceptibility to tuberculosis. Int J Environ Res Public Health. 2021 Nov 21;18(22):12220. [PubMed] [Google Scholar]
Mindt BC, DiGiandomenico A. Microbiome modulation as a novel strategy to treat and prevent respiratory
infections. Antibiotics (Basel). 2022 Apr 1;11(4):474. [PubMed] [Google Scholar]
Budden KF, Shukla SD, Rehman SF, Bowerman KL, Keely S, Hugenholtz P, Armstrong-James DP, Adcock IM, Chotirmall SH, Chung KF, Hansbro PM. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med. 2019;7(10):907-20. [PubMed] [Google Scholar]
Maciel-Fiuza MF, Muller GC, Campos DM, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FS. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol. 2023 Mar 27;14:1098386. [PubMed] [Google Scholar]
Wipperman MF, Fitzgerald DW, Juste MA, Taur Y, Namasivayam S, Sher A, Bean JM, Bucci V, Glickman MS. Antibiotic treatment for tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep. 2017;7(1):10767. [PubMed] [Google Scholar]
Eribo OA, du Plessis N, Ozturk M, Guler R, Walzl G, Chegou NN. The gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty? Cell Mol Life Sci. 2020 Apr;77(8):1497-509. [PubMed] [Google Scholar]
Namasivayam S, Maiga M, Yuan W, Thovarai V, Costa DL, Mittereder LR, Wipperman MF, Glickman MS, Dzutsev A, Trinchieri G, Sher A. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome. 2017 Dec;5(1):71. [PubMed] [Google Scholar]
Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun. 2012;80(1):62-73. [PubMed] [Google Scholar]
Khan N, Mendonca L, Dhariwal A, Fontes G, Menzies D, Xia J, Divangahi M, King IL. Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol. 2019;12(3):772-83. [PubMed] [Google Scholar]
Hu Y, Feng Y, Wu J, Liu F, Zhang Z, Hao Y, Liang S, Li B, Li J, Lv N, Xu Y, Zhu B, Sun Z. The gut microbiome signatures discriminate healthy from pulmonary tuberculosis patients. Front Cell Infect Microbiol. 2019;9:90. [PubMed] [Google Scholar]
Shi W, Hu Y, Ning Z, Xia F, Wu M, Hu YO, Chen C, Prast-Nielsen S, Xu B. Alterations of gut microbiota in patients with active pulmonary tuberculosis in China: a pilot study. Int J Infect Dis. 2021 Oct 1;111:313-21. [PubMed] [Google Scholar]
Mathieu E, Escribano-Vazquez U, Descamps D, Cherbuy C, Langella P, Riffault S, Remot A, Thomas M. Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Front Physiol. 2018 Aug
;9:1168. [PubMed] [Google Scholar]
Bingula R, Filaire M, Radosevic-Robin N, Bey M, Berthon JY, Bernalier-Donadille A, Vasson MP, Filaire E. Desired turbulence? Gut-lung axis, immunity, and lung cancer. J Oncol. 2017 Oct;2017:5035371. [PubMed] [Google
Scholar]
Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, Loukov D, Schenck LP, Jury J, Foley KP, Schertzer JD, Larche MJ, Davidson DJ, Verdu EF, Surette MG, Bowdish DM. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017 Apr 12;21(4):455-66. [PubMed] [Google Scholar]
Shah T, Shah Z, Baloch Z, Cui X. The role of microbiota in respiratory health and diseases, particularly in tuberculosis. Biomedicine & Pharmacotherapy. 2021 Nov 1;143:112108. [Pubmed][Google Scholar]
Gauguet S, D’Ortona S, Ahnger-Pier K, Duan B, Surana NK, Lu R, Cywes-Bentley C, Gadjeva M, Shan Q, Priebe GP, Pier GB. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect
Immun. 2015 Oct;83(10):4003-14. [PubMed] [Google Scholar]
Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, de Villena FP, Yewdell JW, Rehermann B. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell. 2017 Nov 16;171(5):1015-28. [PubMed] [Google Scholar]
Enjeti A, Sathkumara HD, Kupz A. Impact of the gutlung axis on tuberculosis susceptibility and progression. Front Microbiol. 2023;14:1209932. [PubMed] [Google Scholar]
Arias L, Goig GA, Cardona P, Torres-Puente M, Díaz J, Rosales Y, Garcia E, Tapia G, Comas I, Vilaplana C,
Cardona PJ. Influence of gut microbiota on progression to tuberculosis generated by high fat diet-induced obesity in C3HeB/FeJ mice. Front Immunol. 2019 Oct 18;10:2464. [PubMed] [Google Scholar]
Sathkumara HD, Eaton JL, Field MA, Govan BL, Ketheesan N, Kupz A. A murine model of tuberculosis/ type 2 diabetes comorbidity for investigating the microbiome, metabolome and associated immune parameters. Animal Model Exp Med. 2021 Jun;4(2):181- 8. [PubMed] [Google Scholar]
Namasivayam S, Kauffman KD, McCulloch JA, Yuan W, Thovarai V, Mittereder LR, Trinchieri G, Barber DL, Sher A. Correlation between disease severity and the intestinal microbiome in Mycobacterium tuberculosis-infected rhesus macaques. mBio. 2019 Jun 25;10(3):e01018-19. [PubMed] [Google Scholar]
Wang Y, Deng Y, Liu N, Chen Y, Jiang Y, Teng Z, Ma Z, Chang Y, Xiang Y. Alterations in the gut microbiome of individuals with tuberculosis of different disease states.Front Cell Infect Microbiol. 2022 Mar 29;12:836987.
[PubMed] [Google Scholar]
Wang S, Yang L, Hu H, Lv L, Ji Z, Zhao Y, Zhang H, Xu M, Fang R, Zheng L, Ding C, Yang M, Xu K, Li L. Characteristic gut microbiota and metabolic changes in patients with pulmonary tuberculosis. Microb Biotechnol. 2022 Jan;15(1):262-75. [PubMed] [Google Scholar]
Luo M, Liu Y, Wu P, Luo DX, Sun Q, Zheng H, Hu R, Pandol SJ, Li QF, Han YP, Zeng Y. Alternation of gut
microbiota in patients with pulmonary tuberculosis. Front Physiol. 2017 Nov 17;8:822. [PubMed] [Google Scholar]
Li W, Zhu Y, Liao Q, Wang Z, Wan C. Characterization of gut microbiota in children with pulmonary tuberculosis. BMC Pediatr. 2019 Dec;19(1):445. [PubMed] [Google Scholar]
Naidoo CC, Nyawo GR, Sulaiman I, Wu BG, Turner CT, Bu K, Palmer Z, Li Y, Reeve BW, Moodley S, Jackson JG, Limberis J, Diacon AH, van Helden PD, Clemente JC, Warren RM, Noursadeghi M, Segal LN, Theron G. Anaerobe enriched gut microbiota predicts proinflammatory responses in pulmonary tuberculosis. EBioMedicine. 2021 May 1;67:103374. [PubMed] [Google Scholar]
Diallo D, Somboro AM, Diabate S, Baya B, Kone A, Sarro YS, Kone B, Diarra B, Diallo S, Diakite M, Doumbia S, Toloba Y, Murphy RL, Maiga M. Antituberculosis therapy and gut microbiota: review of potential host microbiota directed-therapies. Front Cell Infect Microbiol. 2021 Dec 7;11:673100. [PubMed] [Google Scholar]
Flesch AT, Tonial ST, Contu PD, Damin DC. A administração perioperatória de simbióticos em pacientes com câncer colorretal reduz a incidência de infecções pós-operatórias: ensaio clínico randomizado duplo-cego. Rev Col Bras Cir. 2017;44(6):567-73. Portugese. [PubMed] [Google Scholar]
Copyright (c) 2024 Journal of Communicable Diseases (E-ISSN: 2581-351X & P-ISSN: 0019-5138)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.