A Narrative Review on the Anti-genotoxic Potential of Medicinal Plants in Ayurveda

  • Asha S Raj PhD Scholar, Dept of Dravyagunavijnana, Institute of Teaching and Research in Ayurveda, Institute of National Importance, Jamnagar, Gujarat, India.
  • RN Acharya Director General, CCRAS, New Delhi, India.
  • BR Patel Asso. Professor & HOD, Dept of Dravyagunavijnana, Institute of Teaching and Research in Ayurveda, Institute of National Importance, Jamnagar, Gujarat, India.
  • SD Pawar Scientist, CARI, Kolkata, India.
Keywords: Traditional Medicine, Anti-oxidants, Medicinal Plants, Anti-genotoxic Potential, Protective-effect


Genotoxicity is the capacity of drugs to induce DNA damage by chemically modifying either the structure or the sequence of nucleotides. This is most commonly experienced in lifestyle disorders as the medication in these conditions requires long-term administration. As per the WHO’s current status, 74% of the current deaths in a year are due to lifestyle disorders. Traditional plant-based medicines play a major role in the prevention of a few communicable diseases. Apart from the prevention of disease, they provide a protective effect against the ill effects induced by oxidative stress due to diet and regimes. The current review contains articles from PubMed, Web of Science, Scopus, and Google Scholar databases from October 2021 – September 2022 by searching keywords including “anti-genotoxicity†or “mutagenicity†or “anti-mutagenicity†and “in vitro†or “in vivo†and “plants†or “medicinal plantsâ€. After review, 45 articles were included, which contained information about 38 plants. This article rationalises the long-term usage of medicinal plants in treating various health conditions.

How to cite this article:
Raj AS, Acharya RN, Patel BR, Pawar SD. A Narrative Review on the Anti-genotoxic Potential of Medicinal Plants in Ayurveda. Chettinad Health City Med J. 2023;12(1):70-83.

DOI: https://doi.org/10.24321/2278.2044.202312


Turkez H, Arslan ME, Ozdemir O. Genotoxicity testing: progress and prospects for the next decade. Expert Opin Drug Metab Toxicol. 2017;13(10):1089-98. [PubMed] [Google Scholar]

Greenwald P, Clifford CK, Milner JA. Diet and cancer prevention. Eur J Cancer. 2001;37(8):948-65. [PubMed] [Google Scholar]

Kaur P, Walia A, Kumar S, Kaur S. Antigenotoxic activity of polyphenolic rich extracts from Aegle marmelos (L.) Correa in human blood lymphocytes and E. coli PQ 37. Rec Nat Prod. 2009;3:68-75. [Google Scholar]

Ahmad S, Ahmad S, Ali A, Afzal M. Anticarcinogenic and antimutagenic activity of Alstonia scholaris on the albino mice bone marrow cells and peripheral human lymphocyte culture against methyl methane sulfonate induced genotoxicity. Adv Biomed Res. 2016;5:92. [PubMed] [Google Scholar]

Prajitha V, Thoppil JE. Genotoxic and anti-genotoxic potential of the aqueous leaf extracts of Amaranthus spinosus Linn. using Allium cepa assay. South Afr J Bot. 2016;102:18-25. [Google Scholar]

Subapriya R, Kumaraguruparan R, Abraham SK, Nagini S. Protective effects of ethanolic neem leaf extract on N-methyl-N’-nitro-N-nitrosoguanidine-induced genotoxicity and oxidative stress in mice. Drug Chem Toxicol. 2004;27(1):15-26. [PubMed] [Google Scholar]

Subapriya R, Kumaraguruparan R, Abraham SK, Nagini S. Protective effects of ethanolic neem leaf extract on DMBA-induced genotoxicity and oxidative stress in mice. J Herb Pharmacother. 2005;5(4):39-50. [PubMed] [Google Scholar]

Magesh V, Raman D, Pudupalayam KT. Genotoxicity studies of dry extract of Boswellia serrata. Trop J Pharm Res. 2008;7(4):1129-35. [Google Scholar]

Sharma S, Nagpal A, Vig AP. Genoprotective potential of Brassica juncea (L.) Czern. against mercury-induced genotoxicity in Allium cepa L. Turk J Biol. 2012;36(6):622-9. [Google Scholar]

Sharma S, Nagpal A, Vig AP. Genoprotective potential of Brassica juncea (L.) Czern. against mercury-induced genotoxicity in Allium cepa L. Turk J Biol [Internet]. 2012 [cited 2022 Aug 27];36:622-9. Available from: https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=1740&context=biology

Dayana K, Manasa MR. Evaluation of antigenotoxic activity of ethanolic extract of Calotropis procera root in 7,12-dimethylbenz[a]anthracene induced genotoxicity in Wistar rats. Natl J Physiol Pharm Pharmacol. 2018;8(12):1617-21. [Google Scholar]

Sultan AO, Celik TA. Genotoxic and antimutagenic effects of Capparis spinosa L. on the Allium cepa L. root tip meristem cells. Caryologia Intl J Cytol Cytosyst Cytogenet. 2009;62(2):114-23. [Google Scholar]

Siddique YH, Ara G, Beg T, Faisal M, Ahmad M, Afzal M. Antigenotoxic role of Centella asiatica L. extract against cyproterone acetate induced genotoxic damage in cultured human lymphocytes. Toxicol in Vitro. 2008;22:10-7. [PubMed] [Google Scholar]

Shokrzadeh M, Chabra A, Naghshvar F, Ahmadi A. The mitigating effect of Citrullus colocynthis (L.) fruit extract against genotoxicity induced by cyclophosphamide in mice bone marrow cells. ScientificWorldJournal. 2013;2013:980480. [PubMed] [Google Scholar]

Hassan AZ, Ahmed KM, Abu-Gabal NS, Mahrous KF, Shalaby NM. Phytochemical and genotoxicity studies of Citrus reticulata aerial part in mice. Egyptian Pharm J. 2017;16:87-97. [Google Scholar]

Sharma A, Kumar M, Kaur S. Cuminum cyminum Linn. and Coriandrum sativum Linn. extracts modulate chromium genotoxicity in Allium cepa chromosomal aberration assay. Nucleus. 2011;54:99-105. [Google Scholar]

Giris SM, Shoman TM, Kassem SM, El-Din AE, Abdel-Aziz KB. Potential protective effect of Costus speciosus or its nanoparticles on streptozotocin-induced genotoxicity and histopathological alterations in rats. J Nutr Food Sci. 2015;5(3):1-7. [Google Scholar]

Mohammed MS. In-vivo cytogenetic and genotoxic effects of curcumin on mouse bone marrow. QMJ. 2013;9(16):245-60. [Google Scholar]

Kilani-Jaziri S, Bhouri W, Skandrani I, Limem I. Phytochemical, antimicrobial, antioxidant, and antigenotoxic potentials of Cyperus rotundus extracts. South Afr J Bot. 2011;77(3):767-76. [Google Scholar]

Kilani S, Bouhlel I, Ben R, Abdelwahed A, Hayder N, Mahmoud A, Ghedira K, Chekir-Ghedira PL. Evaluation of the antimutagenic and antiradical potentials of extracts from the tubers of (Tunisian) Cyperus rotundus. Toxicol Environ Chem. 2014;87:415-25. [Google Scholar]

Amkiss S, Dallouh A, Idaomar M, Amkiss B. Genotoxicity and anti-genotoxicity of fennel plant (Foeniculum vulgare Mill.) fruit extracts using the somatic mutation and recombination test (SMART). Afr J Food Sci. 2013;7:193-7. [Google Scholar]

Ebeed NM, Abdou HS, Booles HF, Salah SH, Ahmed ES, Fahmy K. Antimutagenic and chemoprevention potentialities of sweet fennel (Foeniculum vulgare Mill.) hot water crude extract. J Am Sci. 2010;6(9):831-42. [Google Scholar]

Tripathi P, Tripathi R, Patel RK, Pancholi SS. Investigation of antimutagenic potential of Foeniculum vulgare essential oil on cyclophosphamide induced genotoxicity and oxidative stress in mice. Drug Chem Toxicol. 2013;36(1):35-41. [PubMed] [Google Scholar]

Kocaman AY, Guzelkokar M. The genotoxic and antigenotoxic potential of the methanolic root extract of Glycyrrhiza glabra L. on human peripheral blood lymphocytes. Drug Chem Toxicol. 2018;41:368-75. [PubMed] [Google Scholar]

Sharma V, Agarwal RC. Evaluation of anti-clastogenic effects of Glycyrrhiza glabra root extract against cyclophosphamide induced chromosomal aberration in Swiss Albino mice. J Appl Pharma Sci. 2015;5(6):127-32. [Google Scholar]

Ananthi R, Chandra N, Sathiya ST, Ramesh A. Genotoxic and antigenotoxic effects of Hemidesmus indicus R. Br. root extract in cultured lymphocytes. J Ethnopharmacol. 2010;127(2):558-60. [PubMed] [Google Scholar]

Khatib NA, Ghoshal G, Nayana H, Joshi RK, Taranalli AD. Effect of Hibiscus rosa-sinensis extract on modifying cyclophosphamide induced genotoxicity and scavenging free radicals in Swiss Albino mice. Pharmacologyonline. 2009;3:796-808. [Google Scholar]

Akeem A, Mohamed KB, Asmawi MZ, Sofiman OA. Mutagenic and antimutagenic potentials of fruit juices of five medicinal plants in Allium cepa L.: possible influence of DPPH free radical scavengers. Afr J Biotechnol. 2011;10:10248-57. [Google Scholar]

Nguyen T, Talibi H, Hilali A, Anthonissen R, Maes A. In vitro toxicity, genotoxicity and antigenotoxicity of Nigella sativa extracts from different geographic locations. South Afr J Bot. 2019;126:132-41. [Google Scholar]

Khader M, Bresgen N, Eckl PM. Antimutagenic effects ofethanolic extracts from selected Palestinian medicinal plants. J Ethnopharmacol. 2010;127(2):319-24. [PubMed] [Google Scholar]

Khanna A, Shukla P, Tabassum S. Role of Ocimum sanctum Linn. as a genoprotective agent on chlorpyrifos induced genotoxicity. Toxicol Int. 2011;18(1):9-13. [PubMed] [Google Scholar]

Vijaya PP, Rekha B, Mathew AT, Ali MS, Yoganath N, Anuradha V, Parveen PK. Antigenotoxic effect of greensynthesised silver nanoparticles from Ocimum sanctum Linn. leaf extract against cyclophosphamide induced genotoxicity in human lymphocytes-in vitro. Appl Nanosci. 2014;4:415-20. [Google Scholar]

Rao K, Devi KR. The protective effects of Phyllanthus emblica Linn. in cyclophosphamide induced genotoxicity in mice. Int J Pure Appl Biosci. 2016;4(5):90-7.

Chandrasekar MJ, Bommu P, Nanjan MJ, Suresh B. Chemoprotective effect of Phyllanthus maderaspatensis Linn. in modulating cisplatin-induced nephrotoxicity and genotoxicity. Pharma Biol. 2006;44(2):100-6. [Google Scholar]

de Queiroz FM, de Oliveira Matias KW, da Cunha MM, Schwarz A. Evaluation of (anti)genotoxic activities of Phyllanthus niruri L. in rat bone marrow using the micronucleus test. Braz J Pharm Sci. 2013;49(1):135-48. [Google Scholar]

Sanchez-Lamar A, Fiore M, Cundari E, Ricordy R, Cozzi R, de Salvia R. Phyllanthus orbicularis aqueous extract: cytotoxic, genotoxic, and antimutagenic effects in the CHO cell line. Toxicol Appl Pharmacol. 1999;161(3):231-9. [PubMed] [Google Scholar]

Sivakumar V, Devaraj SN. Protective effect of Plumbago zeylanica against cyclophosphamide induced genotoxicity and oxidative stress in Swiss albino mice. Drug Chem Toxicol. 2006;29(3):279-88. [PubMed] [Google Scholar]

Abdou HS, Salah SH, Boolesand HF, Abdel Rahim EA. Effect of pomegranate pretreatment on genotoxicity and hepatotoxicity induced by carbon tetrachloride (CCl4) in male rats. J Med Plant Res. 2012;6(17):3370-80. [Google Scholar]

Mohammed BM. Anti-mutagenic protection of Quercus infectoria galls against 2-Aminoanthracene induced genotoxicity in mice bone marrow. World J Pharm Sci. 2017;5(5):78-202. [Google Scholar]

de S Arajuo C, Brito LD, Tarifa MO, Silva NJ, Rodrigues KS, Cavalcante DG, Gomes AS, Zocoler MA, Yoshihara E, Camparoto ML, Job AE, Kerche LE. Protective effects of bark ethanolic extract from Spondias dulcis Forst F. against DNA damage induced by benzo(a)pyrene and cyclophosphamide. Genet Mol Biol. 2019;42(3):643-54. [PubMed] [Google Scholar]

Kumar M, Thakur R. Syzygium cumini seed extract ameliorates arsenic induced blood cell genotoxicity and hepatotoxicity in Wistar albino rats. Rep Biochem Mol Biol. 2018;7(1):110-8. [PubMed] [Google Scholar]

Tripathi P, Patel RK, Tripathi R, Kanzariya NR. Investigation of antigenotoxic potential of Syzygium cumini extract (SCE) on cyclophosphamide induced genotoxicity and oxidative stress in mice. Drug Chem Toxicol. 2013;36(4):396-402. [PubMed] [Google Scholar]

Chen PS, Li JH, Liu TY, Lin TC. Folk medicine Terminalia catappa and its major tannin component, punicalagin, are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells. Cancer Lett. 2000;152(2):115-22. [PubMed] [Google Scholar]

Ambasta SK, Trivedi I, Kumari S, Kumar A, Verma P, Prasad B, Kumar R, Sinha UK. Anticlastogenic effects of Tinospora cordifolia against arsenic induced genotoxicity using micronucleus assay in Swiss albino mice peripheral blood erythrocytes. IOSR J Environ Sci Toxicol Food Technol. 2017;11(1):97-100. [Google Scholar]

Scassellati-Sforzolini G, Villarini LM, Moretti LM, Marcarelli LM, Pasquini R, Fatigoni C, Kaur LS, Kumar S, Grover IS. Antigenotoxic properties of Terminalia arjuna bark extracts. J Environ Pathol Toxicol Oncol. 1999;18(2):119-25. [PubMed] [Google Scholar]

Mekki L. Genoprotectivity of methanol and ethanol extracted leaf sap of Trigonella foenum-graecum in Allium cepa root assay. Acta Biol Hung. 2014;65(1):85-95. [PubMed] [Google Scholar]

Kaur M, Sharma A, Soodan RK, Chahal V, Kumar V, Katnoria JK, Nagpal AK. Allium cepa Root Chromosomal Aberration assay: a tool to assess genotoxicity of environmental contaminants. In: Sharma A, Kumar M, Kaur S, Nagpal AK, editors. Evaluation of environmental contaminants and natural products: a human health perspective. Springer International Publishing; 2019. p. 65-93. [Google Scholar]

Mathur D, Agarwal RC. Evaluation of in vivo antimutagenic potential of fruits extracts of Withania coagulans. Schol Res Lib. 2011;3(4):373-76. [Google Scholar]

Costa C, Teixeira JP. Biomentoring. In: Wexler P, Abdollahi M, Peyster AD, Gad SC, Greim H, Harper S, Moser VC, Ray S, Tarazona J, Wiegand TJ, editors. Encyclopedia of toxicology. 3rd ed. Academic Press; 2014. p. 483-4.

D’Costa A, Kumar MK, Shyama SK. Genotoxicity assays: the micronucleus test and the single-cell gel electrophoresis assay. In: Meena SN, Naik MM, editors. Advances in biological science research. Academic Press; 2019. p. 291-301. [Google Scholar]

OECD guideline for the testing of chemicals [Internet]; [cited 2022 Aug 27]. Available from: https://www.oecd.org/chemicalsafety/testing/50108781.pdf

Wikipedia [Internet]. SOS chromotest; [cited 2022 Aug 27]. Available from: https://en.wikipedia.org/wiki/SOS_chromotest#Advantages

Feretti D, Zerbini I, Zani C, Ceretti E, Moretti M, Monarca S. Allium cepa chromosome aberration and micronucleus tests applied to study genotoxicity of extracts from pesticide-treated vegetables and grapes. Food Addit Contam. 2007 Jun;24(6):561-72. [PubMed] [Google Scholar]

Richardson C, Allen J, Amphlett G, Chanter D, Phillips B, Richardson C, Williams DA, Allen JA, Chanter DO, Phillips B, Richardson C, Allen JA, Amphlett GE, Changer DO, Chanter C. Analysis of data from in-vitro cytogenetic assays. In: Kirkland DJ, editor. Statistical evaluation of mutagenicity test data. Cambridge: Cambridge University Press; 1989. p. 141-54.

Morita T, Nagaki T, Fukuda I, Okumura K. Clastogenicity of low pH to various cultured mammalian cells. Mutat Res. 1992;268(2):297-305. [PubMed] [Google Scholar]

Scott D, Galloway SM, Marshall RR, Ishidate Jr M, Brusick D, Ashby J, Myhr BC. International Commission for Protection Against Environmental Mutagens and Carcinogens. Genotoxicity under extreme culture conditions. A report from ICPEMC Task Group 9. Mutat Res. 1991;257(2):147-204. [PubMed] [Google Scholar]