

Review Article

Soybeans and Cancer: A Comprehensive Look at Bioactive Components and Their Benefits

Neelaveni K', Angeline Esther Preethi S²

¹Research Scholar, ²Associate Professor and Head, Department of Foods and Nutrition, Rathnavel Subramaniam College of Arts & Science, Coimbatore

DOI: https://doi.org/10.24321/2278.2044.202537

INFO

Corresponding Author:

Neelaveni K, Department of Foods and Nutrition, Rathnavel Subramaniam College of Arts & Science, Coimbatore

E-mail Id:

kanagavelneelu@gmail.com

Orcid Id:

https://orcid.org/0000-0002-9208-105X

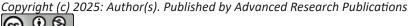
How to cite this article:

Neelaveni K, Preethi S A E. Soybeans and Cancer: A Comprehensive Look at Bioactive Components and Their Benefits. Chettinad Health City Med J. 2025;14(3):37-41.

Date of Submission: 2025-02-04 Date of Acceptance: 2025-05-06

A B S T R A C T

Soybeans (Glycine max), rich in bioactive components like isoflavones, are believed to lower cancer risk, particularly breast cancer, and their use in hydrophobic medicines enhances their anticancer properties. The current review suggests that soybeans might be used as a food and a medicinal component for their anticancer capabilities. Soy products like soybean paste, fermented beverages, okara, thuanao and black soybean extract cream can reduce the risk of gastric, oesophageal, and colon cancers. They have anti-inflammatory and antioxidant properties along with a potential for NIR (Near-Infrared) -triggered cancer treatment. They regulate Mitogen-Activated Protein Kinase (MAPK) signalling, reduce cell proliferation, and modulate gut microbiota. Soy contains twelve isoflavone compounds (glycitin, malonylglycitin, acetylglycitin, genistin, malonylgenistin, acetylgenistin, daidzin, acetyldaidzin, malonyldaidzin, daidzein, genistein, and glycitein), which can be enhanced through fermentation, irradiation, and nano spray drying extraction. These compounds, alone or in combination with other compounds, can be used as anticancer drug carriers, surfactants, antineoplastic agents, and for targeted therapies, growth-inhibitory effects, increasing cellular uptake, and reducing reactive oxygen species. Soy compounds, such as genistein, coumestrol, soy lecithin liposomes and other nanoparticles have various properties in cancer treatment delivery systems. The creation of novel soybean-based products and formulations will be beneficial for the betterment of cancer patients' dietary and lifestyle choices.


Keywords: Anticancer, Genistein, Isoflavones, Liposomes, Soybeans

Introduction

Glycine max (GM), another name for soybeans, is a widely accessible and abundant source of bioactive compounds that offer strong nutritional support. As non-steroidal plant chemicals, isoflavones are frequently found in soy and soy-derived goods. In recent years, one of the possible preventative possibilities for anti-tumour research has been soybean isoflavones. Twelve isoflavone compounds

are found in *Glycine max*, which include daidzein, genistein, glycitein, daidzin, malonyldaidzin, acetyldaidzin, glycitin, malonylglycitin, acetylglycitin, genistin, and malonylgenistin.³ Genistein, daidzein, and coumestrol, natural isoflavones found in soybean products, have been linked to a lower risk of breast cancer.⁴ Soy isoflavones, particularly daidzein and genistein, have been linked to a low incidence of osteoporosis, breast cancer, cardiovascular disease, and colon cancer in Asian communities. The nano-

Chettinad Health City Medical Journal (P-ISSN: 2277-8845 & E-ISSN: 2278-2044)

sized powder, produced by nano spray drying, could be used in dietary supplements, nutraceuticals, and cosmetic products.⁵

Drug delivery systems enhance chemotherapeutic efficacy through targeted and controlled release, but biological barriers in tumour microenvironments hinder nanomedicine penetration.⁶ The integration of hydrophobic drugs into liposomes enhances their bioavailability, stability, and anticancer activity, and reduces drug toxicity.⁷ This review primarily explores the potential of soy in the prevention and treatment of various forms of cancer.

Methodology

A total of 94 articles were obtained from PubMed, with the search topic "soya products in the treatment of cancer" and a publication period of the last 10 years.

- Inclusion criteria: Among the 94 articles, the research articles (43) that mainly focused on soybean and cancer were included in the study.
- Exclusion criteria: Irrelevant articles (51), which included review articles and letters that did not concentrate on soy particles in relation to cancer conditions, were excluded from the study.

Results

The findings, conclusions, future implications, and suggestions from 43 research works are compiled and interpreted here.

Therapeutic Properties of Soybean

A study in Korea found that men with low body mass index who consume more soybean paste have a lower risk of gastric cancer due to its higher concentration of bioactive compounds, which is attributed to its lengthy fermentation process.8 In northwest China, frequent intake of soy products tends to be linked to a lower incidence of oesophageal cancer, according to a different study.9 Patients with localised prostate cancer do not exhibit changes in prostate-specific antigen (PSA) levels or other features of prostate cancer after a brief exposure to fermented soy drinks.¹⁰ A study on mice found that longterm consumption of soybean-derived gma-miR159a, a plant-derived microRNA, effectively prevented colon cancer and colitis, providing new evidence for soybeans' preventive function. 11 Soy fermented by a novel probiotic, B. animalis subsp. lactis LDTM 8102, could influence the immune response and fermentation results in the production of metabolites that reduce cancer cell viability and induce cellular apoptosis. It also have a substantial influence in along with any consequences resulting from their genistein concentration. 12,13 The black soybean extract cream (BSEC) showed promising phytotherapy for its anti-inflammatory and antioxidant properties.¹⁴ To treat cancer with NIR (Near Infrared), carbonised okara, a by-product of the production of tofu, generates sphere-shaped hollow particles called carbon spheres.¹⁵ Thua-nao, an indigenous fermented soybean product popular in northern Thailand, has dried variants with chemopreventive properties.¹⁶ An optimal legume intake has also been associated with reduced prostate cancer risk.¹⁷

Soy Isoflavones in Cancer Treatment

Transformation of soybean isoflavones (TSI) can dramatically reduce the cell viability of human colorectal cancer HTL-9 cells.18 In primary thyrocytes from papillary thyroid cancer cells, genistein has been shown in a study to lessen hydrogen peroxide-induced DNA damage. Additionally, prolonged exposure to genistein-rich soybean products may influence early-life epigenetic reprogramming, which may prevent breast cancer in children and suggest a possible therapeutic intervention. 19,20 By altering gut microbiota, microbial metabolite profiles, and offspring epigenome, soybean genistein ingestion successfully protects against obesity-related metabolic issues and breast cancer in early life.21 Dietary consumption of phyto-oestrogens, including coumestrol, is shown to result in a reduced risk of breast cancer.²² Stronger inhibition of cell growth against MCF-7 cells was found with major isoflavones. Breast cancer cell invasion and migration were inhibited by these bioactive anti-carcinogens, and the inhibitory impact was amplified by combination therapies.²³

It is possible to increase the extract's bioavailability by using the isoflavone extract nanoparticulate powder that is produced by nano spray drying as an ingredient in dietary supplements and nutraceutical goods.²⁴ The irradiated leaves of the Daepung variety have high isoflavone induction with UV-C irradiation.²⁵

According to a study, even at exceptionally high concentrations (25 μ M), isoflavones showed no effect on the survival of healthy donor peripheral blood mononuclear cells or natural killer cells.²⁶

So it was proven that the optimal intake of soy isoflavones has a beneficial effect on cancer prevention with no negative impacts.

Soy as a Component in Drug Delivery

Soy is a dietary and nutraceutical ingredient in cancertreatment medications, with copper nanoparticles (CuNPs) encapsulated in soy lecithin liposomes (SLP), being a suitable drug model for cancer treatment.²⁷ The lunasinenriched soybean extract reduced reactive oxygen species (ROS) production in gastric cells.²⁸ PEGylated liposomes (anticancer carrier) were prepared using ethanol-based proliposome methods; the phospholipid hydrogenated soya phosphatidylcholine (HSPC) is also a component in it.²⁹

ISSN: 2278-2044

DOI: https://doi.org/10.24321/2278.2044.202537

According to a study, soy lecithin vesicles (SLVs) provide promise for precisely targeted cancer treatment.³⁰

A study examined the antioxidant, anticancer, and antiviral properties of defatted soybean meal extracts fermented with *Aspergillus fumigatus* F-993 or *A. awamori* FB-133, and revealed that FDSM (Fermented Defatted Soybean Meal) has the strongest anticancer activity.³¹ The ethanol extract of soybean leaves (SLE) exhibits anti-cancer properties.³² A novel asparaginase (srnASNase), purified from soybean root nodules, is widely used in treating acute lymphoblastic leukaemia and related blood cancers.³³

A few studies concluded that soy lecithin, silybin-Soya phospholipid (SLB-SPC) complex-liposome, CUR (Curcumin)-soybean phosphatidyl choline (SPC) complex and CUR-SPC complex self-assembled nanoparticles (CUR-SPC NPs), Glycine Max Silver Nanoparticles (GMAgNPs), curcumin-soluble soybean polysaccharide (SSPS) nanoparticles, and amaranth particle-loaded soybean lunasin (UM + LunLip) are a few components that have been suggested for use in the treatment of cancer. It has been demonstrated that these elements deliver benefits like decreased adverse effects of chemotherapy on healthy tissues, enhanced tumour accumulation, longer circulation through the system, and better cellular uptake. They also have higher anticancer potency and are efficient in lowering the production of pro-inflammatory cytokines.³⁴⁻⁴⁴

Suggestions

These findings demonstrate that soybeans can be utilised as therapeutic food, an isolated component (Isoflavone), and as a key ingredient in drug delivery systems, all of which have shown beneficial effects.

The development of innovative soybean-derived products and formulations has positive implications for the improvement of dietary and lifestyle options for cancer patients. In addition to its potential for cancer prevention, individuals with no health issues may also incorporate it into their diets as a way to reduce their chances of developing cancer.

Conflict of Interest: None Source of Funding: None

Declaration of Generative AI and AI-Assisted Technologies in the Writing Process:None

References

- 1. Amol, V., Bhati, K. R., & Bhati, K. R. (2021). Nutritive benefits of soybean (Glycine max). Indian J Nutr Diet, 522-33. [https://informaticsjournals.co.in/index.php/iind/article/view/27339]
- 2. Negadmonfared M, Sani RN, Khaligh SG, Hayati F. Effects of isoflavone supplementation on endometrial

- thickness, endometrial hyperplasia, and cancer in ovariectomized cats. Vet Ital. 2022;58(1):35-9. [PubMed] [Google Scholar]
- Messina, M. (2014). Soy foods, isoflavones, and the health of postmenopausal women. The American journal of clinical nutrition, 100, 423S-430S. [https:// doi.org/10.3945/ajcn.113.071464]
- Zafar, A., Singh, S., Satija, Y. K., Saluja, D., & Naseem, I. (2018). Deciphering the molecular mechanism underlying anticancer activity of coumestrol in triplenegative breast cancer cells. Toxicology in Vitro, 46, 19-28. [https://doi.org/10.1016/j.tiv.2017.10.007]
- Sansone, F., Picerno, P., Mencherini, T., Russo, P., Gasparri, F., Giannini, V., ... & Aquino, R. P. (2013). Enhanced technological and permeation properties of a microencapsulated soy isoflavones extract. Journal of Food Engineering, 115(3), 298-305. [https://doi. org/10.1016/j.jfoodeng.2012.10.040]
- Gheybi F, Alavizadeh SH, Rezayat SM, Hatamipour M, Akhtari J, Majidi RF, Badiee A, Jaafari MR. pHsensitive PEGylated liposomal silybin: synthesis, in vitro and in vivo anti-tumor evaluation. J Pharm Sci. 2021 Dec;110(12):3919-28. [PubMed] [Google Scholar]
- Mahmud M, Piwoni A, Filiczak N, Janicka M, Gubernator J. Long-circulating curcumin-loaded liposome formulations with high incorporation efficiency, stability and anticancer activity towards pancreatic adenocarcinoma cell lines in vitro. PLoS One. 2016 Dec 9;11(12):e0167787. [PubMed] [Google Scholar]
- Shin WK, Lee HW, Huang D, De la Torre K, Min S, Shin A, Lee JK, Lee JE, Kang D. Soybean product consumption decreases risk of gastric cancer: results from the Health Examinees Study. Eur J Nutr. 2023 Jun;62(4):1743-53. [PubMed] [Google Scholar]
- Tang L, Lee AH, Xu F, Zhang T, Lei J, Binns CW. Soya and isoflavone intakes associated with reduced risk of oesophageal cancer in north-west China. Public Health Nutr. 2015 Jan;18(1):130-4. [PubMed] [Google Scholar]
- Lokeshwar SD, Ali A, Weiss TR, Reynolds J, Shuch BM, Ferencz T, Kyriakides TC, Mehal WZ, Brito J, Renzulli J, Leapman MS. The effect of a fermented soy beverage among patients with localized prostate cancer prior to radical prostatectomy. BMC Urol. 2024 May 3;24(1):102. [PubMed] [Google Scholar]
- Liu J, Wang F, Song H, Weng Z, Bao Y, Fang Y, Tang X, Shen X. Soybean-derived gma-miR159a alleviates colon tumorigenesis by suppressing TCF7/MYC in mice. J Nutr Biochem. 2021 Jun;92:108627. [PubMed] [Google Scholar]
- Kim JH, Jeong M, Doo EH, Koo YT, Lee SJ, Jang JW, Park JH, Huh CS, Byun S, Lee KW. Glycine max fermented by a novel probiotic, Bifidobacterium animalis subsp. lactis LDTM 8102, increases immuno-modulatory function. J

ISSN: 2278-2044

- Microbiol Biotechnol. 2022 Sep;32(9):1146. [PubMed] [Google Scholar]
- 13. Ouyang X, Chen Y, Tejaswi BS, Arumugam S, Secor E, Weiss TR, Leapman M, Ali A. Fermented soy drink (Q-CAN® PLUS) induces apoptosis and reduces viability of cancer cells. Nutr Cancer. 2022;74(10):3670-8. [PubMed] [Google Scholar]
- 14. Lee HH, Huang YH, Huang JJ, Huang MY. Exploring black soybean extract cream for inflammatory dermatitis—toward radiation dermatitis relief. Int J Mol Sci. 2024 Oct 29;25(21):11598. [PubMed] [Google Scholar]
- Weng Y, Guan S, Wang L, Qu X, Zhou S. Hollow carbon nanospheres derived from biomass by-product okara for imaging-guided photothermal therapy of cancers. J Mater Chem B. 2019;7(11):1920-5. [PubMed] [Google Scholar]
- 16. Taya S, Dissook S, Ruangsuriya J, Yodkeeree S, Boonyapranai K, Chewonarin T, Wongpoomchai R. Thai fermented soybean (Thua-Nao) prevents early stages of colorectal carcinogenesis induced by diethylnitrosamine and 1, 2-dimethylhydrazine through modulations of cell proliferation and gut microbiota in rats. Nutrients. 2024 Oct 16;16(20):3506. [PubMed] [Google Scholar]
- 17. Diallo A, Deschasaux M, Galan P, Hercberg S, Zelek L, Latino-Martel P, Touvier M. Associations between fruit, vegetable and legume intakes and prostate cancer risk: results from the prospective Supplémentation en Vitamines et Mineraux Antioxydants (SU.VI.MAX) cohort. Br J Nutr. 2016 May;115(9):1579-85. [PubMed] [Google Scholar]
- Cui ML, Yang HY, He GQ. Apoptosis induction of colorectal cancer cells HTL-9 in vitro by the transformed products of soybean isoflavones by Ganoderma lucidum. Journal of Zhejiang University. Science. B. 2017 Dec;18(12):1101.
- 19. Ferrari SM, Antonelli A, Guidi P, Bernardeschi M, Scarcelli V, Fallahi P, Frenzilli G. Genotoxicity evaluation of the soybean isoflavone genistein in human papillary thyroid cancer cells. Study of its potential use in thyroid cancer therapy. Nutr Cancer. 2019;71(8):1335-44. [PubMed] [Google Scholar]
- 20. Chen M, Li S, Srinivasasainagendra V, Sharma M, Li Z, Tiwari H, Tollefsbol TO, Li Y. Maternal soybean genistein on prevention of later-life breast cancer through inherited epigenetic regulations. Carcinogenesis. 2022;43(3):190-202. [PubMed] [Google Scholar]
- 21. Chen M, Li S, Arora I, Yi N, Sharma M, Li Z, Tollefsbol TO, Li Y. Maternal soybean diet on prevention of obesity-related breast cancer through early-life gut microbiome and epigenetic regulation. The Journal of nutritional biochemistry. 2022 Dec 1;110:109119.
- 22. Zafar A, Singh S, Naseem I. Cytotoxic activity of soy

- phytoestrogen coumestrol against human breast cancer MCF-7 cells: Insights into the molecular mechanism. Food and Chemical Toxicology. 2017 Jan 1;99:149-61.
- 23. Zhu Y, Yao Y, Shi Z, Everaert N, Ren G. Synergistic effect of bioactive anticarcinogens from soybean on anti-proliferative activity in MDA-MB-231 and MCF-7 human breast cancer cells *in vitro*. Molecules. 2018 Jun 27;23(7):1557. [PubMed] [Google Scholar]
- 24. Del Gaudio P, Sansone F, Mencherini T, De Cicco F, Russo P, Aquino RP. Nanospray drying as a novel tool to improve technological properties of soy isoflavone extracts. Planta medica. 2017 Mar;83(05):426-33.
- 25. Karki KB, Mishra AK, Choi SJ, Baek KH. Effect of ultraviolet C irradiation on isoflavone concentrations in different cultivars of soybean (Glycine max). Plants. 2020 Aug 16;9(8):1043.
- 26. Mace TA, Ware MB, King SA, Loftus S, Farren MR, McMichael E, Scoville S, Geraghty C, Young G, Carson III WE, Clinton SK, Lesinski GB. Soy isoflavones and their metabolites modulate cytokine-induced natural killer cell function. Sci Rep. 2019 Mar 25;9(1):5068. [PubMed] [Google Scholar]
- Ahmed SA, Gaber MH, Salama AA, Ali SA. Efficacy of copper nanoparticles encapsulated in soya lecithin liposomes in treating breast cancer cells (*MCF-7*) in vitro. Sci Rep. 2023 Sep 20;13(1):15576. [PubMed] [Google Scholar]
- Franca-Oliveira G, Peinado SM, Alves de Souza SM, Kalume DE, Ferraz de Souza TL, Hernández-Ledesma B, Martinez-Rodriguez AJ. Proteomic characterization of a lunasin-enriched soybean extract potentially useful in the treatment of *Helicobacter pylori* infection. Nutrients. 2024 Jun 27;16(13):2056. [PubMed] [Google Scholar]
- Najlah M, Suliman AS, Tolaymat I, Kurusamy S, Kannappan V, Elhissi AM, Wang W. Development of injectable PEGylated liposome encapsulating disulfiram for colorectal cancer treatment. Pharmaceutics. 2019 Nov 14;11(11):610. [PubMed] [Google Scholar]
- Cañon JD, Luna MA, Sabini MC, Molina PG, Correa NM. Electrochemical characterization of the encapsulation and release of 5-fluorouracil in nanocarriers formed from soy lecithin vesicles. J Phys Chem B. 2024 Jun 6;128(22):5427-36. [PubMed] [Google Scholar]
- 31. Ghanem KZ, Mahran MZ, Ramadan MM, Ghanem HZ, Fadel M, Mahmoud MH. A comparative study on flavour components and therapeutic properties of unfermented and fermented defatted soybean meal extract. Sci Rep. 2020 Apr 7;10(1):5998. [PubMed] [Google Scholar]
- 32. Kwak Y, Ju J. *Glycine max* Merr. leaf extract possesses anti-oxidant properties, decreases inflammatory mediator production in murine macrophages, and

- inhibits growth, migration, and adhesion in human cancer cells. Food Sci Biotechnol. 2017 Feb;26(1):245-53. [PubMed] [Google Scholar]
- 33. Liu C, Luo L, Lin Q. Antitumor activity and ability to prevent acrylamide formation in fried foods of asparaginase from soybean root nodules. J Food Biochem. 2019 Mar;43(3):e12756. [PubMed] [Google Scholar]
- 34. Shinde VR, Khatun S, Thanekar AM, Hak A, Rengan AK. Lipid-coated red fluorescent carbon dots for imaging and synergistic phototherapy in breast cancer. Photodiagnosis Photodyn Ther. 2023 Mar 1;41:103314. [PubMed] [Google Scholar]
- 35. Hasan M, Elkhoury K, Belhaj N, Kahn C, Tamayol A, Barberi-Heyob M, Arab-Tehrany E, Linder M. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells. Mar Drugs. 2020 Apr 17;18(4):217. [PubMed] [Google Scholar]
- 36. Xie J, Li Y, Song L, Pan Z, Ye S, Hou Z. Design of a novel curcumin-soybean phosphatidylcholine complex-based targeted drug delivery systems. Drug Deliv. 2017;24(1):707-19. [PubMed] [Google Scholar]
- 37. Yadav S, Gupta S. Development and *in vitro* characterization of docetaxel-loaded ligand appended solid fat nanoemulsions for potential use in breast cancer therapy. Artif Cells Nanomed Biotechnol. 2015;43(2):93-102. [PubMed] [Google Scholar]
- 38. Ahmed MM, Fatima F, Anwer MK, Aldawsari MF, Alsaidan YS, Alfaiz SA, Haque A, Az A, Alhazzani K. Development and characterization of Brigatinib loaded solid lipid nanoparticles: *in-vitro* cytotoxicity against human carcinoma A549 lung cell lines. Chem Phys Lipids. 2020 Nov 1;233:105003. [PubMed] [Google Scholar]
- 39. Shaji J, Menon I. PEGylated liposomes of meloxicam: optimization by quality by design, *in vitro* characterization and cytotoxicity evaluation. Pharm Nanotechnol. 2017;5(2):119-37. [PubMed] [Google Scholar]
- 40. Dubey A, Raju F, Lobo CL, Gs R, Hebbar S, Shetty A, Kumar P, El-Zahaby SA. Formulation and characterization of RBCS coated carboplatin loaded nano-liposomal formulation for managing breast cancer. Drug Dev Res. 2024 Dec;85(8):e70019. [PubMed] [Google Scholar]
- 41. Kumar KV, Varadaraju KR, Shivaramu PD, Kumar CH, Prakruthi HR, Shekara BC, Shreevatsa B, Wani TA, Prakasha KC, Kollur SP, Shivamallu C. Bactericidal, anti-hemolytic, and anticancerous activities of phytofabricated silver nanoparticles of glycine max seeds. Frontiers in Chemistry. 2024 Aug 16;12:1427797.
- 42. Pan K, Chen H, Baek SJ, Zhong Q. Self-assembled curcumin-soluble soybean polysaccharide

- nanoparticles: physicochemical properties and *in vitro* anti-proliferation activity against cancer cells. Food Chem. 2018 Apr 25;246:82-9. [PubMed] [Google Scholar]
- 43. Dávila-Ortiz G, Castañeda-Reyes ED, Juárez-Palomo CI, Perea-Flores MD, Pérez-Pastén-Borja R, Márquez-Flores YK, González de Mejía E. Liposomes containing amaranth unsaponifiable matter and soybean lunasin suppress ROS production in fibroblasts and reduced interleukin production in macrophages. Int J Environ Res Public Health. 2022 Sep 16;19(18):11678. [PubMed] [Google Scholar]
- 44. Kudarha R, Dhas NL, Pandey A, Belgamwar VS, Ige PP. Box—Behnken study design for optimization of bicalutamide-loaded nanostructured lipid carrier: stability assessment. Pharm Dev Technol. 2015;20(5):608-18. [PubMed] [Google Scholar]

ISSN: 2278-2044