

Research Article

# A Study to Assess the Fitness Level of Elementary School Students in Kamrup Metro, Assam

Prarthana Phukan<sup>1</sup>, Somyata C Satpathy Sarma<sup>2</sup>, Dony Kotoky Sarma<sup>3</sup>, Rohit Sharma<sup>4</sup>

- <sup>1</sup>Assistant Professor, Shantha College of Physiotherapy, Shantha Group of Institutions, Karnataka, India
- <sup>2</sup>Associate Professor, The Assam Royal Global University, Assam, India
- <sup>3</sup>Assistant Professor, Physiotherapy Department, College of Physiotherapy and Medical Sciences, Assam, India
- <sup>4</sup>Assistant Professor, The Assam Royal Global University, Assam, India

**DOI:** https://doi.org/10.24321/2278.2044.202533

# INFO

## **Corresponding Author:**

Prarthana Phukan, Shantha College of Physiotherapy, Shantha Group of Institutions, Karnataka, India

#### E-mail Id:

prarthana.phukan2402@gmail.com

# Orcid Id:

https://orcid.org/0009-0001-2508-0436 How to cite this article:

Phukan P, Sarma S C S, Sarma D K, Sharma R. A Study to Assess the Fitness Level of Elementary School Students in Kamrup Metro, Assam. Chettinad Health City Med J. 2025;14(3):11-18.

Date of Submission: 2024-11-21
Date of Acceptance: 2025-09-02

# ABSTRACT

Introduction: The prevalence of physical inactivity, affecting both children and adults, stands out as a paramount public health challenge in the 21st century. Physical inactivity is one of the major risk factors for diseases linked to obesity and cardiovascular disease. Physical activity in children emerges as a catalyst not just for enhancing their physical well-being but also for bolstering self-esteem, nurturing social skills, and shaping behaviour which can contribute to the cultivation of a positive and enduring lifestyle throughout their lives.

Objective: To assess the fitness levels of elementary school students in Kamrup Metro, Assam, using the FitnessGram test

Methods: A cross-sectional study was conducted among 468 students aged 7–11 years. Four FitnessGram tests (1-mile walk test, sit-and-reach, trunk lift, and curl-up) were administered to assess aerobic capacity, muscular strength, flexibility, and endurance. Descriptive statistics were done using the SPSS statistical tool.

Results: The results showed that boys demonstrated a significantly higher average aerobic capacity ( $VO_2$  max) than girls (p < 0.05). This superior performance by boys was consistently noted across other fitness measures, specifically the Sit-and-Reach, Curl-Up, and Trunk Lift assessments.

Conclusion: This research evaluated the physical fitness of elementary school children in Kamrup Metro, Assam, highlighting that boys exhibited significantly superior physical fitness as compared to girls in gender specific tests and contributions (significant at p < 0.001). Thus, the present study reveals the direct relationship of physical fitness (aerobic capacity, muscular strength and flexibility and endurance) among elementary school students using the FitnessGram test. As regular physical activity improves the physical fitness of an individual, adding various activities to the daily routine will not only help to improve fitness level but also to maintain a healthy lifestyle.

**Keywords:** Physical Fitness, FitnessGram, Physical Activity, Healthy Fitness Zone (HFZ)



## Introduction

Physical inactivity, in both children and adults, is a major public health concern of the 21st century, especially in the last two–three years due to the COVID-19 lockdown.<sup>1,2</sup>

Physical activity (PA) plays an important role in children by improving their physical condition, self-esteem, social skills, and behaviour, and establishing a positive lifestyle for their future lifespan.<sup>3,4</sup>

Physical fitness (PF) is performing activities of the body effectively and efficiently. It encompasses a range of abilities, including muscle strength and endurance, motor skills, and cardiorespiratory endurance.<sup>5</sup>

The evaluation of PF is crucial for understanding the health status of children and adolescents. It includes cardiorespiratory fitness during exercise, muscular fitness, the ability to generate force, and motor fitness, which encompasses proficiency in daily physical activity. PF, particularly cardiovascular fitness, helps in maintaining a healthy BMI, reducing the risk of cardiovascular diseases, and overweight and obesity comorbidities in children as well as adolescents worldwide.<sup>6–10</sup>

It has been documented that, as compared to boys, girls are less physically active both during and outside the school day and in addition, this activity level decreases as they become adults. 11–15 Research findings indicate that females exhibit lower levels of daily moderate-to-vigorous physical activity as compared to men who participate in moderate to very intense sports. This indicates that even if they do play, they do so at a low to moderate level of intensity. 16,17

According to the World Health Organization's guidelines of 2020 regarding PA and sedentary lifestyles and the latest physical activity guidelines for students, children need a minimum of one hour of daily moderate-to-vigorous exercise to stay healthy and fit. 18-20 In 2016, around 13% of the adult population in the world was obese. More than 1.9 billion adults over the age of 18 years were overweight, and more than 650 million were obese. In 2020, 39 million children under five were overweight or obese. 21

FitnessGram is an educational tool that helps students understand their fitness levels and provides a framework for improvement. By employing FitnessGram, individuals can proactively determine their fitness zones, gaining valuable knowledge about potential links to future chronic illnesses. FitnessGram can provide valuable insights into students' fitness levels, which can be utilised to develop tailored physical activity programmes.<sup>22</sup>

There are many tests under the FitnessGram, but the health-related components of the FitnessGram test include the following: for cardiorespiratory fitness, 1-mile walk test, curl-up test, and trunk lift test, and for core muscle strength, sit-and-reach test (flexibility).<sup>22,23</sup>

In Assam, there is a lack of studies to know the correlation between PF and PA among varying age groups in school children. Thus, the study aims to assess the fitness level of elementary school students in Kamrup Metro in Assam.

Studies have found that insufficient PA and poor diet are widely known as the primary causes for an unhealthy body weight,<sup>24</sup> and the rising incidence of childhood obesity is contributing to an increase in chronic conditions such as type 2 DM, hypertension, and hypercholesterolaemia.<sup>25</sup> So, it is important to be fit from childhood to prevent such diseases in later stages of life.

However, very few studies have been done regarding the physical fitness of children representing the Indian population. Thus, this study was conducted to analyse the fitness levels between boys and girls using the FitnessGram test.

# Methodology

A quantitative cross-sectional study was conducted for 6 months in the month of June on 2023 among 468 elementary students (aged 7–11 years) using cluster sampling. Before data collection, consent forms and permission were taken from the concerned authority and the parents/ guardians, respectively.

#### The inclusion criteria were

- 1. 7–11-year-old school-going students
- Subjects who returned the parents'/ guardians' signed consent forms

## The exclusion criteria were

- If any injury or surgery happened within the past 3 months
- 2. If the subject had any kind of neurogenic, orthopaedic, or cardiovascular disease
- 3. If the student was an active participant in any sport

# Materials used: (Figure 1)

- 1. Pen or pencil
- 2. Paper
- 3. Watch
- 4. Calculator
- 5. 3inch wide strip
- 6. Weight machine
- 12-inch yardstick or ruler
- 8. Sliding indicator

At first, the subjects did warm-up exercises which included walking around for 5 to 6 minutes, gently shaking hands, and rubbing the hands together. Between each test, participants took approximately 3 minutes of rest.

Four tests were used for assessing the physical fitness of the subjects in this study, i.e.

ISSN: 2278-2044

DOI: https://doi.org/10.24321/2278.2044.202533



Figure 1.Materials Used

1-Mile Walk Test to Check  $VO_2$  max: This test aimed to complete a 1-mile course in the shortest time possible. All participants commenced the race from a single starting line, maintaining a consistent walking pace throughout the entire distance. On receiving the signal, the subjects commenced running at their paces. After the walk, a 15-second heart rate count was taken. The duration of walking and the heart rate were recorded. (Figure 2)

VO<sub>2</sub> max = -0.3877 (Age) + 6.315 (Gender) - 0.0769 (Weight) - 3.2649 (Time) - 0.1565 (bpm)

# Gender coding: 0: Female and 1: Male



Figure 2.The I-Mile Walk Test

Curl-Up Test: The subjects were lying supine with arms straight, feet flat, and knees bent at a 140° angle. A 3-inch measuring strip was placed under their knees. They curled up, sliding fingers across the strip, and then returned to the starting position. The test continued until exhaustion or form breakdown. (Figure 3)

Sit-and-Reach Test: In this test, the subjects performed a seated reach test. Barefoot and with legs spread wide, they placed their feet against the front of a wooden box. They then leaned forward, pushing a sliding indicator as far as possible along a marked scale, holding the maximum reach for two seconds. The best of three attempts was recorded. (Figure 4)



Figure 3.Curl-Up Test



Figure 4.Sit-and-Reach Test

Trunk Lift Test: The subjects were positioned face down on a mat with pointed toes and hands tucked under their thighs. They were instructed to slowly and carefully raise the upper body 12" off the ground with the help of their back muscles. A yardstick was placed near their chin to measure the height. They were told to hold the position for measurement, but not to exceed 12". (Figure 5)



Figure 5.Trunk Lift Test

ISSN: 2278-2044

The subjects took deep breaths during the cool-down period by extending their arms to the side with the palms facing up and exhaled gently, pressing the palms down in front of the body just below the navel. They repeated this 5 to 6 times.

Ethical clearance for the study was granted by the College of Physiotherapy and Medical Sciences' Institutional Ethics Committee, in accordance with the rules for biomedical research involving humans. As the study was done in various schools so, the school's principal and the parents/ guardians of the students also were given the consent forms.

Table I. Descriptive Summary of Girls

| Age     |     | Weight (kg) |                  | VO <sub>2</sub> max | Sit-and-Reach | Curl-Up |         | Trunk Lift |         |
|---------|-----|-------------|------------------|---------------------|---------------|---------|---------|------------|---------|
| (Years) | N   | Mean        | Std<br>Deviation | Mean                | Mean          | Minimum | Maximum | Minimum    | Maximum |
| 7       | 23  | 20.2691     | 1.22581          | 31.5830             | 4.91          | 4       | 6       | 4          | 6       |
| 8       | 59  | 19.1063     | 1.63093          | 32.7600             | 5.53          | 4       | 8       | 4          | 8       |
| 9       | 63  | 20.6830     | 2.40252          | 43.6763             | 6.71          | 6       | 10      | 5          | 10      |
| 10      | 61  | 23.4213     | 2.27927          | 52.9989             | 8.90          | 7       | 12      | 7          | 12      |
| 11      | 26  | 25.6892     | 2.36565          | 56.0754             | 9.15          | 9       | 12      | 8          | 12      |
| Total   | 232 | 21.5220     | 3.01018          | 43.5420             | 7.08          | 4       | 12      | 4          | 12      |

**Table 2.Descriptive Summary of Boys** 

| Age<br>(Years) |     | Weight (kg) |                  | VO <sub>2</sub> max | VO <sub>2</sub> max Sit-and-Reach |         | l-Up    | Trunk Lift |         |
|----------------|-----|-------------|------------------|---------------------|-----------------------------------|---------|---------|------------|---------|
|                | N   | Mean        | Std<br>Deviation | Mean                | Mean                              | Minimum | Maximum | Minimum    | Maximum |
| 7              | 30  | 18.7200     | 2.07967          | 33.0553             | 6.10                              | 4       | 7       | 5          | 7       |
| 8              | 62  | 21.8976     | 3.18130          | 41.7006             | 6.63                              | 4       | 9       | 5          | 9       |
| 9              | 52  | 25.6802     | 2.76989          | 54.2323             | 8.35                              | 6       | 11      | 6          | 11      |
| 10             | 61  | 28.8033     | 2.61621          | 63.7836             | 10.21                             | 7       | 15      | 8          | 12      |
| 11             | 31  | 29.0935     | 2.53955          | 69.6313             | 10.81                             | 10      | 15      | 10         | 12      |
| Total          | 236 | 25.0573     | 4.58640          | 52.7396             | 8.42                              | 4       | 15      | 5          | 12      |

Table 3. Comparison of Descriptive Summary of Boys and Girls

| Group | N   | Weight (kg) |                  | VO <sub>2</sub> max |                  | Sit-and-Reach |                  | Curl-Up |                  | Trunk Lift |                  |
|-------|-----|-------------|------------------|---------------------|------------------|---------------|------------------|---------|------------------|------------|------------------|
|       |     | Mean        | Std<br>Deviation | Mean                | Std<br>Deviation | Mean          | Std<br>Deviation | Mean    | Std<br>Deviation | Mean       | Std<br>Deviation |
| Girls | 232 | 21.5220     | 3.01018          | 43.5420             | 11.06239         | 7.08          | 1.999            | 7.66    | 2.206            | 7.5767     | 2.24996          |
| Boys  | 236 | 25.0573     | 4.58640          | 52.7396             | 14.35850         | 8.42          | 2.298            | 8.78    | 2.962            | 8.5869     | 2.20488          |

ISSN: 2278-2044

DOI: https://doi.org/10.24321/2278.2044.202533

## Results

Table 1 & 2 shows descriptive result of both girls and boys for weight of the subjects and all the tests i.e.,  $VO_2$  max, Sit & Reach test, Curl up test and Trunk Lift test. On comparing the results between both girls and boys (Table 3), we got to know that there was a significance difference in the mean of the dependent variable, especially aerobic capacity i.e.,  $VO_2$  max between both boys (43.542) and girls (52.7396) have significant difference (p < 0.05) with respect to sitand-reach test ( $\bar{x}\bar{x}_{_{\rm G}}$  = 7.08,  $\bar{x}\bar{x}_{_{\rm B}}$  = 8.42), curl-up test ( $\bar{x}\bar{x}_{_{\rm G}}$  = 7.66,  $\bar{x}\bar{x}_{_{\rm B}}$  = 8.78) and trunk lift test ( $\bar{x}\bar{x}_{_{\rm G}}$  = 7.57,  $\bar{x}\bar{x}_{_{\rm B}}$  = 8.58).

Shapiro—Wilk test was used to confirm the normality (Table 4) of the distribution. Statistical significance was set at p < 0.01 and p < 0.001 for normality assessment. Therefore, when the p value was less than these values, the result turned out to be significant, indicating that these data did not meet the normality assumption, i.e., p < 0.05. Thus, we had to use a non-parametric test for the analysis.

Mann–Whitney U (Table 5) test was used due to the data's non-parametric distribution. The statistically significant result p < 0.05 allowed for the rejection of the null hypothesis in acceptance of the alternative hypothesis with 95% confidence level.

**Table 4. Normality Test** 

| Variables           | Group | Shapiro-Wilk |     |          |        |  |  |
|---------------------|-------|--------------|-----|----------|--------|--|--|
| variables           | Стоир | Statistic    | df  | p Values | Remark |  |  |
|                     | Girls | 0.977        | 232 | 0.001    | **     |  |  |
| Weight              | Boys  | 0.970        | 236 | 0.000    | ***    |  |  |
|                     | Girls | 0.953        | 232 | 0.000    | ***    |  |  |
| VO <sub>2</sub> max | Boys  | 0.959        | 236 | 0.000    | ***    |  |  |
|                     | Girls | 0.939        | 232 | 0.000    | ***    |  |  |
| Sit-and-reach       | Boys  | 0.946        | 236 | 0.000    | ***    |  |  |
|                     | Girls | 0.957        | 232 | 0.000    | ***    |  |  |
| Curl-up             | Boys  | 0.951        | 236 | 0.000    | ***    |  |  |
|                     | Girls | 0.951        | 232 | 0.000    | ***    |  |  |
| Trunk lift          | Boys  | 0.930        | 236 | 0.000    | ***    |  |  |

<sup>\*\*</sup>Significant at p < 0.01, \*\*\*Significant at p < 0.001

Table 5.Mann-Whitney U Test Results

| Variables           | Mann–Whitney U | p Value | Remark |  |
|---------------------|----------------|---------|--------|--|
| Weight              | 14799.000      | 0.000   | ***    |  |
| VO <sub>2</sub> max | 16731.000      | 0.000   | ***    |  |
| Sit-and-reach       | 18574.500      | 0.000   | ***    |  |
| Curl-up             | 21998.000      | 0.000   | ***    |  |
| Trunk lift          | 20309.500      | 0.000   | ***    |  |

<sup>\*\*\*</sup>Significant at p < 0.001

ISSN: 2278-2044

#### **Discussion**

Physical activity is crucial for overall health. Regular PA helps in maintaining a healthy lifestyle by reducing chronic disease risk and improving both physical and mental well-being. Conversely, sedentary lifestyles can lead to posture problems, obesity, circulation issues, and increased mortality risk. Regular PA enhances blood circulation, strengthens bones and muscles, and improves stress tolerance.<sup>26–28</sup>

Researchers have uncovered a significant relationship between PA habits formed during childhood to adulthood. Young, physically active individuals are more inclined to sustain their active behaviours as they become adults. Moreover, recent research underscores the potential benefits of PA on children's cognitive functions and academic performance in the educational context. Thus, it is vital to promote adequate levels of PA among young individuals to bolster their current and future health.<sup>26,27</sup>

In this study, aerobic capacity was 52.74 ml/kg/min for boys and 43.54 ml/kg/min for girls, compared to previous research done; the values were below 42 mL/kg/min for boys and 35 mL/kg/min for girls.<sup>30</sup> Low aerobic capacity is linked to obesity risk. So, field-based fitness tests are practical, cost-effective, and suitable for large groups, making them crucial for addressing childhood obesity, a major public health issue.<sup>31,32</sup>

The values for sit-and-reach test results were 8.42 inches for boys and 7.08 inches for girls. However, this test is influenced by arm and leg length. Children with longer limbs may score better, even with less flexible hamstrings. 33 Also, the standard score for this test is 8 inches for both boys and girls, with no upper limit. 34 So, even though this study suggested that most of the students were in the healthy fitness zone (HFZ) group, assessing children's performance on a continuum poses difficulties, and to maintain it, they have to do regular physical activity.

The recommended performance range for the curl-up test in both boys and girls in the age group of 7 to 11 years is 4 to 28 and 4 to 29 repetitions, respectively. In the current study, for girls, the range was 4 to 12 repetitions, and for boys, it was 4 to 15 repetitions. Though the results were within the HFZ range, it should be noted that since the results for both groups are closer to the lower limit of the range, so, to reduce the risk factors, they have to maintain or improve them.

In the age group of 7 to 11 years, a target score of 6 to 12 inches is considered ideal for the trunk lift test, irrespective of gender. This range indicates the desired level of trunk extensor strength and flexibility. <sup>22</sup> Here, the result for girls was 4 to 12 inches, and for boys, it was 5 to 12 inches. It means all children were in the HFZ. Thus, the study's

findings indicated that most boys and girls exhibited satisfactory levels of abdominal, upper body, and back extensor. These findings offer an optimistic assessment of their overall physical fitness and health.<sup>35</sup>

While comparing the results of all 4 tests in both boys and girls, the overall findings of this study suggested that the 1-mile walk test showed a significant difference in the mean values as compared to the other three tests. This shows that the fitness levels differ significantly between boys and girls (significant at p < 0.001). Girls are less physically active than boys, possibly due to earlier maturation. Regular physical activity is crucial for improving fitness levels, both in school and at home.  $^{36}$ 

In the current educational environment, students are compelled to remain seated for the entirety of their classes, resulting in a minimum of five hours of sitting during the school day, often accompanied by sedentary behaviour. <sup>37</sup> Therefore, it is possible that the child is physically fit, but not active. A study by Chen et al. showed that for health-related physical fitness in class 5, students who had engaged in both school activities; physical activities and recess and other sports or dances had better physical fitness. <sup>35</sup> PA, PF, and overall health are interconnected. To maintain good health, children should focus on improving their fitness levels. Given the limitations of this study, longer-term research with daily activity logs is recommended to get better insight into the influencing factors of children's health.

Since this study used cluster sampling, the results may vary according to different types of schools. As the subjects were children, they might not have been able to maintain the pace for the walk test. The 1-mile walk test was an outdoor test for the students in this study; therefore, various weather conditions may have influenced the results. If the subjects were slightly heavyset, then it might have affected the results of the sit-and-reach test. This study did not specify if the subjects had any kind of hobby, like dance.

# Conclusion

This study showed that boys demonstrated better physical fitness than girls. Therefore, it is suggested that incorporating playful activities can improve the PF of children, leading to better health outcomes. However, since the current study only focused on aerobic capacity, muscular strength, flexibility, and endurance, further research is recommended to assess the children's body composition and all five components of physical fitness to get a better assessment of the children.

**Declaration of Generative AI and AI-Assisted Technologies in the Writing Process:** SPSS tools for statistical analysis.

Source of Funding: None

ISSN: 2278-2044

DOI: https://doi.org/10.24321/2278.2044.202533

**Conflict of Interest:** as the study was done during summer so the data might vary due to weather.

# References

- Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009 Jan;43(1):1-2. [PubMed] [Google Scholar]
- Moore SA, Faulkner G, Rhodes RE, Brussoni M, Chulak-Bozzer T, Ferguson LJ, Mitra R, O'Reilly N, Spence JC, Vaderloo LM, Tremblay MS. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: a national survey. Int J Behav Nutr Phys Act. 2020 Jul;17(1): 85. [PubMed] [Google Scholar]
- Strauss RS, Rodzilsky D, Burack G, Colin M. Psychosocial correlates of physical activity in healthy children. Arch Pediatr Adolesc Med. 2001 Aug;155(8):897-902. [PubMed] [Google Scholar]
- 4. Terre L, Drabman RS, Meydrech EF, Hsu HS. Relationship between peer status and health behaviors. Adolescence. 1992;27(107):595-602. [PubMed] [Google Scholar]
- Malina RM. Physical fitness of children and adolescents in the United States: status and secular change. Med Sport Sci. 2007;50:67-90. [PubMed] [Google Scholar]
- 6. Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond). 2008;32(1):1-11. [PubMed] [Google Scholar]
- 7. DuBose KD, Eisenmann JC, Donnelly JE. Aerobic fitness attenuates the metabolic syndrome score in normal-weight, at-risk-for-overweight, and overweight children. Pediatrics. 2007 Nov;120(5):e1262-8. [PubMed] [Google Scholar]
- 8. Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega FB, Milani RV. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis. 2018;61(2):142-50. [PubMed] [Google Scholar]
- Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, Robinson TN, Scott BJ, Jeor SS, Williams CL. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation. 2005 Apr;111(15):1999-2012. [PubMed] [Google Scholar]
- Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014 Aug;384(9945):766-81. [PubMed] [Google Scholar]
- 11. Katzmarzyk P, Denstel K, et al., editors. The 2016 United States Report Card on physical activity for children and youth. National Physical Activity Plan. 2016.
- 12. Long MW, Sobol AM, Cradock AL, Subramanian SV,

- Blendon RJ, Gortmaker SL. School-day and overall physical activity among youth. Am J Prev Med. 2013 Aug;45(2):150-7. [PubMed] [Google Scholar]
- Hubbard K, Economos CD, Bakun P, Boulos R, Chui K, Mueller MP, Smith K, Sacheck J. Disparities in moderate-to-vigorous physical activity among girls and overweight and obese schoolchildren during schooland out-of-school time. Int J Behav Nutr Phys Act. 2016 Mar;13:39. [PubMed] [Google Scholar]
- 14. Calvert HG, Mahar MT, Flay B, Turner L. Classroombased physical activity: minimizing disparities in school-day physical activity among elementary school students. J Phys Act Health. 2018 Mar;15(3):161-8. [PubMed] [Google Scholar]
- Nyberg GA, Nordenfelt AM, Ekelund U, Marcus C. Physical activity patterns measured by accelerometry in 6- to 10-yr-old children. Med Sci Sports Exerc. 2009 Oct;41(10):1842-8. [PubMed] [Google Scholar]
- Belcher BR, Berrigan D, Dodd KW, Emken BA, Chou CP, Spruijt-Metz D. Physical activity in US youth: effect of race/ethnicity, age, gender, and weight status. Med Sci Sports Exerc. 2010 Dec;42(12):2211-21. [PubMed] [Google Scholar]
- Lenhart CM, Hanlon A, Kang Y, Daly BP, Brown MD, Patterson F. Gender disparity in structured physical activity and overall activity level in adolescence: evaluation of youth risk behavior surveillance data. Int Sch Res Notices. 2012;2012:674936. [Google Scholar]
- 18. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput JP, Chastin S, Chou R, Dempsey PC, DiPietro L, Ekelund U, Firth J, Friedenreich CM, Garcia L, Gichu M, Jago R, Katzmarzyk PT, Lambert E, Leitzmann M, Milton K, Ortega FB, Ranasinghe C, Stamatakis E, Tiedemann A, Troiano RP, van der Ploeg HP, Wari V, Willumsen JF. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020 Dec;54(24):1451-62. [PubMed] [Google Scholar]
- 19. US Department of Health and Human Services. Physical activity guidelines for Americans. 2nd ed. Washington, DC, USA: US Department of Health and Human Service; 2018.
- Katzmarzyk PT, Denstel KD, Beals K, Carlson J, Crouter SE, McKenzie TL, Pate RR, Sisson SB, Staiano AE, Stanish H, Ward DS, Whitt-Glover M, Wright C. Results from the United States 2018 report card on physical activity for children and youth. J Phys Act Health. 2018 Nov;15(S2):S422-4. [PubMed] [Google Scholar]
- World Health Organisation [Internet]. Obesity and overweight; 2025 [cited 2025 Jun 11]. Available from: https://www.who.int/news-room/fact-sheets/detail/ obesity-and-overweight
- 22. The Cooper Institute. FitnessGram administration manual: the journey to myhealthyzone. 5th ed. Champaign, IL, USA: Human Kinetics; 2017. [Google Scholar]

ISSN: 2278-2044

- 23. Committee on Physical Activity and Physical Education in the School Environment, Food and Nutrition Board, Institute of Medicine; Kohl III HW, Cook HD, editors. Educating the student body: taking physical activity and physical education to school. Washington (DC): National Academies Press (US); 2013. [PubMed] [Google Scholar]
- 24. Nicklas T, Johnson R; American Dietetic Association. Position of the American Dietetic Association: dietary guidance for healthy children ages 2 to 11 years. J Am Diet Assoc. 2004 Apr;104(4):660-77. [PubMed] [Google Scholar]
- 25. Must A, Strauss RS. Risks and consequences of childhood and adolescent obesity. Int J Obes Relat Metab Disord. 1999 Mar;23(Suppl 2):S2-11. [PubMed] [Google Scholar]
- 26. Hu D, Zhou S, Crowley-McHattan ZJ, Liu Z. Factors that influence participation in physical activity in schoolaged children and adolescents: a systematic review from the social ecological model perspective. Int J Environ Res Public Health. 2021 Mar 18;18(6):3147. [PubMed] [Google Scholar]
- 27. Ha AS, Ng JY, Lonsdale C, Lubans DR, Ng FF. Promoting physical activity in children through family-based intervention: protocol of the "Active 1 + FUN" randomized controlled trial. BMC Public Health. 2019 Feb 20;19(1):218. [PubMed] [Google Scholar]
- 28. Bidzan-Bluma I, Lipowska M. Physical activity and cognitive functioning of children: a systematic review. Int J Environ Res Public Health. 2018 Apr 19;15(4):800. [PubMed] [Google Scholar]
- 29. Marques A, Santos R, Ekelund U, Sardinha LB. Association between physical activity, sedentary time, and healthy fitness in youth. Med Sci Sports Exerc. 2015 Mar;47(3):575-80. [PubMed] [Google Scholar]
- 30. Carayanni V, Bogdanis GC, Vlachopapadopoulou E, Koutsouki D, Manios Y, Karachaliou F, Psaltopoulou T, Michalacos S. Predicting VO<sub>2</sub>max in children and adolescents aged between 6 and 17 using physiological characteristics and participation in sport activities: a cross-sectional study comparing different regression models stratified by gender. Children (Basel). 2022 Dec 9;9(12):1935. [PubMed] [Google Scholar]
- 31. Silva DA, Lang JJ, Barnes JD, Tomkinson GR, Tremblay MS. Cardiorespiratory fitness in children: evidence for criterion-referenced cut-points. PLoS One. 2018 Aug 1;13(8):e0201048. [PubMed] [Google Scholar]
- 32. Comeras-Chueca C, Marin-Puyalto J, Matute-Llorente A, Vicente-Rodriguez G, Casajus JA, Gonzalez-Aguero A. The effects of active video games on health-related physical fitness and motor competence in children and adolescents with healthy weight: a systematic review and meta-analysis. Int J Environ Res Public Health. 2021 Jun 29;18(13):6965. [PubMed] [Google Scholar]
- 33. Ha T, Moon J, Dauenhauer B, Krause J, McMullen J, Gaudreault K. Health-related fitness levels among

- title I elementary school students. Int J Environ Res Public Health. 2021 Jul;18(15):7778. [PubMed] [Google Scholar]
- 34. Ajisafe T, Garcia T, Fanchiang HC. Musculoskeletal fitness measures are not created equal: an assessment of school children in Corpus Christi, Texas. Front Public Health. 2018;6:142. [PubMed] [Google Scholar]
- 35. Chen W, Hammond-Bennett A, Hypnar A, Mason S. Health-related physical fitness and physical activity in elementary school students. BMC Public Health. 2018 Jan;18(1):195. [PubMed] [Google Scholar]
- 36. Telford RM, Telford RD, Olive LS, Cochrane T, Davey R. Why are girls less physically active than boys? Findings from the LOOK longitudinal study. PLoS One. 2016 Mar 9;11(3):e0150041. [PubMed] [Google Scholar]
- 37. Júdice PB, Silva AM, Berria J, Petroski EL, Ekelund U, Sardinha LB. Sedentary patterns, physical activity and health-related physical fitness in youth: a cross-sectional study. Int J Behav Nutr Phys Act. 2017 Mar 4;14(1):25. [PubMed] [Google Scholar]